
Simple, efficient, sound-and-complete combinator
parsing for all context-free grammars, using an oracle

Tom Ridge

University of Leicester

Abstract

Parsers for context-free grammars can be implemented directly and
naturally in a functional style known as “combinator parsing”, us-
ing recursion following the structure of the grammar rules. Tradi-
tionally parser combinators have struggled to handle all features of
context-free grammars, such as left recursion.

Previous work introduced novel parser combinators that could
be used to parse all context-free grammars. A parser generator built
using these combinators was proved both sound and complete in the
HOL4 theorem prover. Unfortunately the performance was not as
good as other parsing methods such as Earley parsing.

In this paper, we build on this previous work, and combine it in
novel ways with existing parsing techniques such as Earley parsing.
The result is a sound-and-complete combinator parsing library that
can handle all context-free grammars, and has good performance.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; F.4.2 [Grammars and Other Rewriting
Systems]: Parsing; I.2.7 [Natural Language Processing]: Parsing

General Terms Parsing, Functional programming, Combinator
parsing, Earley parsing, Context-free grammar

Keywords parsing, functional, combinator, Earley, context-free

1. Introduction

In previous work [17] the current author introduced novel parser
combinators that could be used to parse all context-free grammars.
For example, a parser for the grammar E -> E E E | "1" | ǫ
can be written in OCaml as:

let rec parse_E = (fun i -> mkparser "E" (
(parse_E **> parse_E **> parse_E)
||| (a "1")
||| eps) i)

In [5] Barthwal and Norrish discuss this work:

[Ridge] presents a verified parser for all possible context-
free grammars, using an admirably simple algorithm. The

[Copyright notice will appear here once ’preprint’ option is removed.]

drawback is that, as presented, the algorithm is of complex-
ity O(n5).

Existing techniques such as Earley parsing [6] take time O(n3)
in the length of the input in the worst case. Therfore, as far as
performance is concerned, [17] is not competitive with such tech-
niques. However a more subtle problem, arguably more important,
is also present. Experience shows that the previous algorithm tends
to achieve its worst case run time on many classes of grammar. This
is in marked contrast to Earley parsing, which although O(n3) in
the worst case, usually performs very well in practice. For exam-
ple, common classes of grammar can be parsed in linear time us-
ing Earley’s algorithm [15]. In this work, we seek to address these
performance problems. We have three main goals for our parsing
library.

• The library should provide an interface based on parser combi-
nators.

• The library should handle all context-free grammars.

• The library should have “good” performance.

Our chosen interface is parser combinators, and as with the pre-
vious work, we desire to parse arbitrary context-free grammars (we
motivate these choices in Section 2). The challenge is to achieve
these goals whilst providing Earley-like performance: O(n3) in
the worst case, but typically much better on common classes of
grammar. Our main contribution is to show how to combine a com-
binator parsing interface with an efficient general parsing algo-
rithm such as Earley parsing. We list further contributions in Sec-
tion 17. We now briefly outline our new approach, and then give an
overview of the rest of the paper.

Consider the problem of parsing an input string s, given a
grammar Γ (a finite set of rules) and a nonterminal start symbol S.
In general, we will work with substrings si,j of the input s between
a low index i and a high index j, where i ≤ j. In symbols we might
write the parsing problem as Γ ⊢ S →∗ si,j . Suppose the grammar
contains the rule S → AB. Then one way to derive Γ ⊢ S →∗ si,j
is to derive Γ ⊢ A →∗ si,k and Γ ⊢ B →∗ sk,j :

Γ ⊢ A →∗ si,k Γ ⊢ B →∗ sk,j

Γ ⊢ S →∗ si,j
(S → A B) ∈ Γ

This rule resembles the well-known Cut rule of logic, in that
it introduces an unknown k in the search for a derivation. The
problem is that there is no immediate way to determine the possible
values of k when working from the conclusion of the rule to the
premises. Put another way, a top-down parse of the substring si,j
must divide the substring into two substrings si,k and sk,j , but there
is no information available to determine the possible values of k.
Attempting to parse for all k such that i ≤ k ≤ j results in poor
real-world performance.

1 2014/3/2

The traditional combinator parsing solution is to parse prefixes
of the substring si,j . Since si,j is trivially a prefix of itself, a
solution to this more general problem furnishes a solution to the
original. Moreover, this approach gives possible candidates for the
value k: We first attempt to find all parses for nonterminal A for
prefixes of input si,j ; the results will be derivations for si,k where
k ≤ j. We can then attempt to parse nonterminal B for prefixes of
sk,j , since possible values of k are now known. Note that parsing
prefixes of a substring will require more work, which is a source of
inefficiency with combinator parsing as traditionally presented.

We propose a different solution: assume the existence of an
oracle that can provide the unknown values of k. As we show
later, this allows one to solve the problem of parsing context-free
grammars using combinator parsing. However, in the real-world we
must also provide some means to construct the oracle. Our answer
is simple: use some other parsing technique, preferably one that
has good performance. In this work we use Earley parsing, but any
other general parsing technique would suffice.

There are several technical problems that must be addressed.
For example, to handle left-recursion we adapt the notion of parsing
contexts originally introduced in [17]. A central new challenge
is to reconcile the implementation of Earley parsing with that of
combinator parsers. For example, consider the following parser for
the grammar E -> E E E | "1" | ǫ.

let rec parse E = (fun i → mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E) ≫ (fun (x, (y, z)) → x + y + z))
⊕ (a1 ≫ (fun → 1))
⊕ (eps ≫ (fun → 0))) i)

This parser uses parsing actions to count the length of the parsed
input. The parsing code implicitly embodies the grammar. How-
ever, typical implementations of Earley parsing require explicit rep-
resentations of the grammar, such as the following:

let g = [("E", [NT "E";NT "E";NT "E"]); ("E", [TM "1"]);
("E", [TM "eps"])]

In this representation of a grammar (a finite set of rules, here
represented using a list), rules are pairs, where the left-hand side
is a nonterminal (identified by a string) and the right-hand side is
a list of symbols, either nonterminal symbols such as NT "E" or
terminal symbols such as TM "eps".

Our solution to this challenge requires interpreting the parsing
combinators in three different ways. The first interpretation embeds
a symbol with a given parser. With this we can define a function
sym of parser which takes a parser as an argument and returns the
associated symbol. For example, sym of parser parse E evaluates
to NT "E". The second interpretation builds on the first to associate
a concrete representation of the grammar with each parser. With
this we can define a function grammar of parser which takes a
parser as an argument and returns the associated grammar. For
example, evaluating grammar of parser parse E returns a record

with a field whose value is the following1:

[("(E*E)", Seq (NT "E", NT "E"));
("(E*(E*E))", Seq (NT "E", NT "(E*E)"));
("((E*(E*E))+1)", Alt (NT "(E*(E*E))", TM "1"));
("(((E*(E*E))+1)+eps)",Alt(NT "((E*(E*E))+1)",TM "eps"));
("E", Atom (NT "(((E*(E*E))+1)+eps)"))]

This is a binarized version of the previous grammar. Note that
nonterminals now have unusual names, such as (E*E). Right-hand
sides are either atoms, binary sequences (of symbols, not nonter-
minals cf. Chomsky Normal Form), or binary alternatives. The
function grammar of parser allows us to inspect the structure of

1 A second field records the terminal parsers that are used, such as a1 and
eps.

the parser, in order to extract a grammar, which can then be fed to
an Earley parser.

The Earley parser takes the grammar, and a start symbol, and
parses the input string s. The output from the Earley parsing phase
can be thought of as a list of Earley productions of the form
(X → α.β, i, j, l). Here X is a nonterminal, α and β are sequences
of symbols (β is non-empty), and i, j, l are integers. The meaning
of such a production is that there is a rule X → α β in the
grammar, the substring si,j could be parsed as the sequence α,
and moreover the substring sj,l could be parsed as the sequence
β. These productions can be used to construct an oracle.

The oracle is designed to answer the following question: given a
grammar Γ, a rule S → AB in Γ, and a substring si,j , what are the
possible values of k such that Γ ⊢ A →∗ si,k and Γ ⊢ B →∗ sk,j?
To determine the values of k we look for Earley productions of
the form (S,A.B, i, k, j). Such a production says exactly that the
substring si,j could be parsed as the sequence A B and that si,k
could be parsed as A and sk,j could be parsed as B. Note that it
suffices to consider rules of the form S → A B, where there are
two symbols on the right hand side, because grammar of parser
returns binarized grammars.

The third interpretation of the parsing combinators follows the
traditional interpretation, except that, rather than resort to parsing
prefixes, we now use the oracle to determine where to split the input
string during a parse. In fact, all necessary parsing information has
already been deduced from the input s during the Earley phase,
so this phase degenerates into using the oracle to apply parsing
actions appropriately, in the familiar top-down recursive manner.
During this phase we make use of a parsing context to handle left
recursion, and memoization for efficiency.

In outline, our algorithm cleanly decomposes into 3 phases.
Given a parser p and an input string s we perform the following
steps.

1. Extract grammar Γ and start symbol S from the parser p and
feed Γ, S and s to the Earley parser, which performs a tradi-
tional Earley parse of the input.

2. Take the Earley productions that result and construct the oracle.

3. Use the oracle to guide the action phase.

Earley parsing is theoretically efficient O(n3) and performs
well in practice. The construction of the oracle involves processing
the Earley productions, which have the same bound as the Earley
parser itself, O(n3). Parsing actions involve arbitrary user-supplied
code, so it is not possible to give an a priori bound on the time taken
during the action phase, however, in Section 14 we argue that the
performance of this stage is close to optimal. Thus, we argue that
our approach results in “good” performance. In Section 14 we also
provide real-world evidence to support these claims.

In this paper we present a version of our code, called mini-P3,
that focuses on clarity for expository purposes, whilst preserving
all important features. The full P3 code follows exactly the struc-

ture we outline here with only minor differences2. Our implemen-
tation language is a small subset of OCaml, essentially the simply
typed lambda calculus with integers, strings, recursive functions,

records and datatypes3. Apart from memoization, the code is purely

2 Footnotes describe how mini-P3 differs from P3.
3 In the following sections we have lightly typeset the OCaml code. The
sequencing combinator ***> is written ⊗ and associates to the right; the
alternative combinator |||| is written ⊕; and the action function >>>>
is written ≫. The notation s.[i] denotes the i th character of the string s.
Records with named fields are written e.g. 〈f1 = v1; f2 = v2〉. Functional
record update is written 〈r with f1 = v1; f2 = v2〉. Otherwise the OCaml
syntax we use should be readily understandable by anyone familiar with
functional programming.

2 2014/3/2

functional. It should be very easy to re-implement our approach in
other functional languages such as Haskell, Scheme and F♯. The
full code for mini-P3 and P3 can be found in the online resources
http://www.tom-ridge.com/p3.html.

The structure of the rest of the paper is as follows. In Sec-
tion 2 we motivate our goals. In Section 3 we give two key ex-
amples, and discuss some common misunderstandings concerning
our approach. In Section 4 we discuss preliminaries and in Sec-
tion 5 we introduce the basic types such as those for substrings and
grammars. The subsequent sections modularly introduce different
aspects of our approach. The fact that different aspects are han-
dled modularly is a strength of our approach, and greatly facilitates
exposition. We start by discussing the types related to parsers in
Section 6, and then define the sequencing and alternative combi-
nators in Section 7. In Section 8 we introduce our running exam-
ple, which we develop further in Sections 10 and 12. Initially we
deal with grammars which do not contain the terminal ǫ, and hand
code the oracle. As we progress we extend our example so that we
end up with efficient, memoized parsers capable of dealing with all
context-free grammars. In Section 9 we describe the Earley parsing
phase and the construction of the oracle. In Section 11 we recall the
notion of parsing context and show how to combine this with our
parsing combinators. In Section 13 we implement memoization to
make the action phase efficient. In Section 14 we report on vari-
ous experiments to measure performance. In Section 15 we briefly
sketch the correctness argument. In Section 16 we discuss related
work, and in Section 17 we conclude.

2. Motivation

We briefly justify the desire to handle all context-free grammars,
and for an interface based on parser combinators.
Why all context-free grammars? Currently programmers have a
choice: They may use a restricted parsing technique that cannot
handle all context-free grammars, but which typically gives ex-
tremely good real-world performance. Alternatively, they may use
a parsing technique that can handle all context-free grammars, but
where the performance is poor in comparison to more specialized
techniques.

Where performance is the priority, restricted parsing techniques
must be used. This causes problems when the grammar in ques-
tion does not fall in the restricted class. Typically the programmer
must change the grammar so that it does fall in the restricted class.
Sometimes, for example with natural language, this may not be
possible. Even when this is possible, it is often difficult since it
usually involves understanding the details of the restricted parsing
algorithm. For example, a parsing failure is often accompanied by
an error message, such as “shift/reduce conflict”, which is incom-
prehensible without some understanding of the underlying parsing
machinery. It also introduces further complications, for example,
the relation of the transformed grammar to the original may not be
clear, so that further modification and maintenance of the grammar
becomes difficult. The problem is that the specification of the gram-
mar has been altered because the underlying tool is not capable of
supporting the programmers intention.

When performance is not the priority (for example when pro-
totyping parsers, or when performing one-off transformations on
data) and where the grammar does not fall in a restricted class (such
as natural language), parsers which support all context-free gram-
mars are usually preferred, since the programmer can write a parser
without understanding the details of the parsing algorithm being
used. Our main motivation for handling all context-free grammars
is that this choice makes our library conceptually simple: the user
never encounters the sorts of difficulties described above with re-
stricted parsers. In Section 14 we show that we currently provide
very good performance for general context-free grammars. In fu-

ture work we aim to provide the best of both worlds, i.e. in addi-
tion, for restricted classes of grammar, we want the performance to
be comparable with the best parsers available for those classes.
Why combinator parsing? The advantages of combinator parsing
are well-understood: The structure of such parsers follows closely
the grammar, making them easy to write, modify and maintain. As
functions, parsers are first-class objects in functional languages,
allowing parsers to be parameterized by other parsers, passed as
arguments to functions, combined with language features such as
type classes and higher-order modules, integrated smoothly with
the type system (with all the attendant benefits), and so on. Pro-
grammers have great flexibility e.g. to define their own parsing
combinators for situations not covered by the library. The top-down
recursive-descent nature of combinator parsers means that their be-
haviour with respect to side-effects is also easy for the programmer
to understand. Combinator parsers constructed by hand are used ex-
tensively in the real-world, because they offer the most flexible in-
terface to the programmer. The main disadvantages of combinator
parsing, as traditionally presented, is that it cannot handle arbitrary
grammars, and the performance can be very poor. In this paper we
seek to address these shortcomings.

3. Example

The purpose of this section is to introduce some example parsers to
illustrate our approach, and to clarify an aspect of our approach that
is commonly misunderstood. An efficient parser for the grammar E
-> E E E | "1" | ǫ is as follows:

let tbl = Hashtbl.create 0

let rec parse E = (fun i → memo p3 tbl (mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E)
≫ (fun (x, (y, z)) → NODE(x, y, z)))
⊕ (a1 ≫ (fun → LEAF(1)))
⊕ (eps ≫ (fun → LEAF(0))))) i)

Our approach is complete, which means that our library guar-
antees to produce all good parse trees (see Section 11 for the def-
inition of good parse tree). Given the empty string, the parser re-
turns a single parse tree (corresponding to the rule E -> ǫ). For
input length 1, there is again a single good parse tree. For length 2,
there are 3 parse trees. For length 4, there are 150 parse trees. The
sequence continues as sequence A120590 from the On-line Ency-

clopedia of Integer Sequences4. For example, for input length 19,
there are 441152315040444150 parse trees, but as with most ex-
ponential behaviours it is not feasible to actually compute all these
parse trees. Now let us consider the following parser, which is iden-
tical except that it computes (in all possible ways) the length of the
input parsed:

let tbl = Hashtbl.create 0

let rec parse E = (fun i → memo p3 tbl (mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E) ≫ (fun (x, (y, z)) → x + y + z))
⊕ (a1 ≫ (fun → 1))
⊕ (eps ≫ (fun → 0)))) i)

Naively we might expect that this also exhibits exponential
behaviour, since presumably the parse trees must all be generated,
and the actions applied. This expectation is wrong. Running this
example parser on an input of size 19 returns in 0.02 seconds with
a single result 19. For an input of size 100, this parser returns a
single result 100 in 5 seconds, and over a range of inputs this parser
exhibits polynomial behaviour rather than exponential behaviour.
As far as we are aware, no other parser can handle such examples.

4 http://oeis.org/A120590

3 2014/3/2

In the rest of the paper we discuss, amongst other things, the
techniques and careful engineering that makes this possible.

4. Mathematical preliminaries

In this section we review some background material, using informal
mathematics. In the following sections, where necessary, we clarify
the connection between these definitions and the formal code.

Substrings si,j are triples of a string and two integers, represent-
ing the part of the string s between indexes i and j. If the length of
s is n, then 0 ≤ i ≤ j ≤ n. Two substrings si,k and sk,j can be
concatenated to give the substring si,j .

Symbols are the disjoint union of the set of nonterminals and
the set of terminals. Nonterminals are written e.g. E, terminals e.g.
"1". The terminal corresponding to the empty string is traditionally
written ǫ. To each terminal is associated a set of substrings corre-
sponding to that terminal. For example, the terminal "1" is associ-
ated to the set of substrings of the form si,i+1, where the character
at index i in s is the character 1. The terminal ǫ is associated to the
set of substrings of the form si,i. A rule is a pair of a nonterminal
and a list of symbols, written e.g. S → A B or E -> "1" E "1".
The right-hand side of a rule cannot be the empty list. The variables
α, β are typically used to represent finite sequences (lists) of sym-
bols. The bar notation is shorthand for different alternatives e.g. E
-> E E E | "1" | ǫ denotes the three rules E -> E E E, E ->
"1" and E -> ǫ. A grammar is a finite set of rules.

Parse trees are finitely branching trees consisting of nodes (each
decorated with a nonterminal) and leaves (each decorated with a
terminal and a substring representing the part of the input that was
parsed by that terminal). The substring at a leaf should be in the
set associated to the terminal at that leaf. Given a grammar Γ,
a node in a tree decorated by a nonterminal X , and children of
that node decorated by symbols S0, . . . , Sm, there should be a rule
X → S0 . . . Sm in Γ. Moreover, the substrings at the leaves should
match up in the obvious way: if two adjacent leaves have substrings
si,j and s′j′,k then s′ = s and j′ = j.

Given a grammar Γ, parse trees give rise to a relation between
symbols X and the substrings si,j that “can be parsed as” an X .
In symbols, this relation is written Γ ⊢ X →∗ si,j . The substring
si,j can be parsed as the symbol X if there is a parse tree with X at
the root, such that the concatenation of the substrings at the leaves
gives si,j . Similarly, a substring si,j can be parsed as the sequence
X Y if there exists k such that si,k can be parsed as an X , and
sk,j can be parsed as a Y . This definition is extended inductively
to finite sequences of symbols in the obvious way.

Given a grammar Γ, a start symbol S, and an input string s
of length n, parsing involves determining the parse trees rooted at
S such that the concatenation of the substrings at the leaves gives
s0,n.

5. Basic types

In Fig. 1 we give types for finite maps (represented by association
lists), substrings, terminals, nonterminals, symbols, the right-hand
sides of parse rules, parse rules, and grammars. Alternatives occur-
ring as right-hand sides of rules are not treated as shorthand, but
are captured explicitly. Note that the rhs type permits only unary
rules (e.g. E -> F) and binary rules (e.g. sequences E -> A B or
alternatives E -> A | B). This is a restriction on the internal rep-
resentation of the rules and not on the user of the library.

Raw parsers capture the set of substrings associated to a given

terminal. They can be more-or-less arbitrary OCaml code5. Given

5 A raw parser should behave as a pure function, and should return prefixes
of its argument. For a fully formal treatment of the parsers associated with
terminals see [17].

type (α, β) fmap = (α × β) list
type substring = SS of string × int × int
type term = string
type nonterm = string
type symbol = NT of nonterm | TM of term

type rhs = Atom of symbol | Seq of symbol × symbol
| Alt of symbol × symbol
type parse rule = nonterm × rhs
type grammar = parse rule list

type raw parser = substring→ substring list
type ty oracle = (symbol × symbol) → substring→ int list
type local context = LC of (nonterm × substring) list

let empty fmap = []
let empty oracle = (fun (sym1, sym2) → fun ss → [])
let empty context = (LC [])

Figure 1. Basic types and trivial values

type (α, β, γ) sum3 = Inl of α | Inm of β | Inr of γ
type inl = unit
type outl = symbol

type mid = 〈 rules7 : parse rule list;
tmparsers7 : (term, raw parser) fmap 〉
type inm = mid
type outm = mid

type inr = 〈 ss4 : substring; lc4 : local context;
oracle4 : ty oracle 〉
type α outr = α list

type input = (inl, inm, inr) sum3
type α output = (outl, outm, α outr) sum3
type α parser3 = (input → α output)

let empty mid = 〈rules7 = []; tmparsers7 = empty fmap〉

Figure 2. Parser types and trivial values

a substring SS(s, i, j), a raw parser returns a list of substrings
SS(s, i, k) indicating that the prefix SS(s, i, k) could be parsed as
the corresponding terminal. For example, the raw parser raw a1
consumes a single 1 character from the input:

let raw a1 (SS(s, i, j)) = (
if i < j && s.[i] = ′1′ then [SS(s, i, i + 1)] else [])

The oracle type captures the idea that an oracle takes two symbols
sym1, sym2, and a substring SS(s, i, j), and returns those integers k
such that SS(s, i, k) can be parsed as sym1, and SS(s, k, j) can be
parsed as sym2.

Finally, the type local context is discussed in the section on
parsing with context, Section 11.

6. Parser types

In this section we discuss the types related to parsers given in Fig. 2.
In our approach, a parser should be viewed as a collection of three
separate functions. We first discuss the sum3 type, and the function
sum3 which converts three separate functions to a single function,
and the function unsum3 which converts a single function of the

4 2014/3/2

appropriate form to three separate functions. Following this, we
discuss the particular instances of the sum3 type that we use for
our parsers.
The sum3 type The sum3 type generalizes the familiar binary
sum to three components. Given three functions of type α → δ,
β → ǫ and γ → ζ, we can form a composite function of type
(α, β, γ) sum3 → (δ, ǫ, ζ) sum3. We can define this composite
function explicitly:

let sum3 (f, g, h) = (fun i → match i with
| Inl l → Inl(f l) | Inm m → Inm(g m) | Inr r → Inr(h r))

Moreover, this function is invertible:

let unsum3 u = (
let f = (fun x → dest inl (u (Inl x))) in
let g = (fun x → dest inm (u (Inm x))) in
let h = (fun x → dest inr (u (Inr x))) in
(f, g, h))

Here we make use of destructors such as dest inl, where
dest inl (Inl x) = x.

We use the functions sum3 and unsum3 extensively when defin-
ing the parser combinators. In particular, as a function from inputs
to outputs, a parser satisfies the extra conditions (not explicit in the
type): given an argument of the form Inl x, the parser produces a
result of the form Inl x’, and similarly for Inm and Inr. Parsers p of
type input → α output should be thought of as the sum of three
functions, i.e. p = sum3(f, g, h). Here f is the left-component of
the parser, of type inl → outl, g is the middle-component of the
parser, of type inm → outm and h is the right-component of the
parser, of type inr → α outr.
Left component, extracting a symbol from a parser The left
component of a parser consists of a function of type inl → outl,
that is, from unit to symbol. If parse E is a parser for the non-
terminal E, then the expression parse E (Inl ()) should evaluate to
Inl (NT "E"). We define the following auxiliary function:

let sym of parser p = (dest inl (p (Inl ())))

Middle component, extracting a grammar from a parser The
middle component of a parser consists of a function of type
inm → outm, where inm and outm are both equal to type mid.
The middle component of a parser is therefore of type mid→mid.
Intuitively the mid type represents the grammar associated with a
parser. The middle component of a parser such as parse E can be
seen as grammar transformer, that takes a grammar and extends it
with extra rules. The type mid is a record type with two fields. The
first is a list of parse rules. The second is a finite map from termi-
nals to raw parsers. We use the middle component to extract the
grammar associated to a parser such as parse E. The idea is that
if parse E is a parser for the nonterminal E, then the expression
parse E (Inm m) should evaluate to a value of the form Inm m’,
where m’ is m augmented with rules for the nonterminal E (and
all nonterminals reachable from E), and the terminal parsers in-
volved in the definition of parse E (and all terminal parsers in-
volved in the definition of nonterminals reachable from E). The
function grammar of parser can then be defined as follows:

let grammar of parser p = (dest inm (p (Inm empty mid)))

Right component, recursive descent parser The right component
is a function of type inr → α outr, where α outr = α list. The left
and middle components allow a certain amount of introspection on
the parsing code that forms the body of parsers such as parse E.
The right component is more familiar, and resembles the traditional
type of a combinator parser: a function from a string to a list of
possible values. We work with substrings rather than strings, so an
input i of type inr contains a component i.ss4 of type substring.

Two additional fields are present: i.oracle4 is an oracle that indi-
cates how to split the input when parsing a sequence of symbols,
and i.lc4 is a parsing context that allows combinator parsers to han-
dle all context-free grammars. We discuss these additional fields
further in the following sections. The output type α outr is simply
a list of values at an arbitrary type α.

7. Parsing combinators

In the previous section we discussed the α parser3 type and related
types. In this section we give the definition of the sequencing
combinator p1 ⊗ p2. The definition of the alternative combinator
p1 ⊕ p2 follows the sequencing combinator mutatis mutandis.
The following section illustrates the use of these combinators on
a simple example.

Consider the left component of the sequencing combinator. This
should take two parsers p1 and p2 and produce the left component
(a function from unit to symbol) of the parser p1 ⊗ p2. The
definition is:

let seql p1 p2 = (fun () →
let (f1, ,) = unsum3 p1 in
let (f2, ,) = unsum3 p2 in
let rhs = Seq(f1 (), f2 ()) in
mk symbol rhs)

The left component is a function from unit argument () to
a symbol representing the sequential combination of the two
underlying parsers. We use the auxiliary function mk symbol
to generate new symbols for possible right hand sides. These
new symbols are always nonterminals. The requirement on
mk symbol is simply that it should be injective on its argument:

if mk symbol rhs’ = mk symbol rhs then rhs’ = rhs6.
By way of example, with the current implementation, evaluating

mk symbol (Seq(NT "E",NT "E")) returns (NT "(E*E)") 7.
The middle component for the combination p1 ⊗ p2, of type

mid → mid, transforms a list of rules by adding a new rule repre-
senting the sequencing of p1 and p2. It should also call the under-
lying parsers so that they in turn add their rules.

let seqm p1 p2 = (fun m →
let NT nt = seql p1 p2 () in
if List.mem nt (List.map fst m.rules7) then m
else (
let (f1, g1,) = unsum3 p1 in
let (f2, g2,) = unsum3 p2 in
let new rule = (nt, Seq(f1 (), f2 ())) in
let m1 = 〈 m with rules7 = (new rule :: m.rules7) 〉 in
let m2 = g1 m1 in let m3 = g2 m2 in m3))

Note that the code first checks whether the nonterminal nt cor-
responding to p1 ⊗ p2 is already present in the rules. If so, this
nonterminal has already been processed, and there is no need to

6 Related to this is the requirement that users do not annotate two different

parsers with the same nonterminal; the following must be avoided:

let rec parse E = (fun i → mkntparser "E" . . . i)
and parse F = (fun i → mkntparser "E" . . . i)

There seems no way to enforce this constraint using types. It should be
possible to check this constraint dynamically when parsers are evaluated.
An alternative is to use a gensym-like technique to construct arguments to
mkntparser automatically.
7 Generated names should not clash with user names. The traditional solu-
tion is to incorporate a “forbidden” character, not available to users, into
generated names. A better approach would use a more structured datatype
than strings for the names of nonterminals. For simplicity, we stick with
strings and assume the user does not use symbols such as * in the names of
nonterminals.

5 2014/3/2

continue further. This check also prevents non-termination of seqm
when dealing with recursive grammars. If the nonterminal is not
present, then the new rule is constructed, added to the list of rules,
and then the middle components g1 and g2 of the parsers p1 and p2
are invoked in turn, to add their rules.

The right component of the sequencing combinator should take
two parsers p1 of type α parser3, and p2 of type β parser3,
and produce the right component of the parser p1 ⊗ p2, of type
inr → (α × β) outr.

let seqr p1 p2 = (fun i0 →
let sym1 = sym of parser p1 in
let sym2 = sym of parser p2 in
let ks = i0.oracle4 (sym1, sym2) i0.ss4 in
let SS(s, i, j) = i0.ss4 in
let f1 k = (
let rs1 = dest inr (p1 (Inr 〈 i0 with ss4 = (SS(s, i, k)) 〉)) in
let rs2 = dest inr (p2 (Inr 〈 i0 with ss4 = (SS(s, k, j)) 〉)) in
list product rs1 rs2)
in
List.concat (List.map f1 ks))

The function works by first determining the symbols sym1 and
sym2 corresponding to the two underlying parsers. It then calls
the oracle with the appropriate symbols and substring i0.ss4 =
SS(s, i, j). The resulting values for k are bound to the variable
ks. For each of these values k, parser p1 is called on the sub-
string SS(s, i, k) and p2 is called on the substring SS(s, k, j). The
results are combined using the library functions list product and
List.concat. The function list product takes two lists and forms a
list of pairs.

The corresponding right component altr for the alternative
combinator is much simpler: as with traditional combinator parsers,
the results of the parsers p1 and p2 are simply appended.

let altr p1 p2 = (fun i →
let rs1 = dest inr (p1 (Inr i)) in
let rs2 = dest inr (p2 (Inr i)) in
List.append rs1 rs2)

We are now in a position to define the sequential combination
p1 ⊗ p2. This uses the previously defined functions seql, seqm, seqr
to construct a new parser of type (α × β) parser3 from a parser p1
of type α parser3 and a parser p2 of type β parser3.

let p1 ⊗ p2 = (fun i0 → let f = seql p1 p2 in
let g = seqm p1 p2 in let h = seqr p1 p2 in
sum3 (f, g, h) i0)

The alternative combination p1 ⊕ p2 is identical, except that
seql becomes altl and so on. We also define the “semantic action”
function, which takes a parser p of type α parser3 and a function f
from α to β and returns a parser of type β parser3, by mapping the
function f over the list of values in the right component. Apart from
the fact that we now have three components to deal with, this is the
approach taken by traditional parser combinators.

let p ≫ f = (fun i → match i with
| Inl → (Inl (dest inl (p i)))
| Inm → (Inm (dest inm (p i)))
| Inr → (Inr (List.map f (dest inr (p i)))))

Finally, we turn to the auxiliary function mkntparser. This func-
tion allows the user to introduce concrete names for nontermi-
nals, to label the corresponding code for parsers: let parse E =
(fun i → mkntparser "E" . . . i). At this stage, we introduce a ver-
sion of mkntparser that does not deal with context. In Section 11
we add the ability to handle context.

let mkntparser’ nt p = (fun i → match i with
| Inl () → Inl (NT nt)
| Inm m → (
if List.mem nt (List.map fst m.rules7) then Inm m
else (
let sym = sym of parser p in
let new rule = (nt,Atom sym) in
p (Inm 〈 m with rules7 = (new rule :: m.rules7) 〉)))

| Inr r → (let Inr rs = p i in Inr (unique rs)))

For the left component, mkntparser’ simply returns a symbol
NT nt corresponding to the user supplied label nt. For the middle
component, the parser p has a corresponding symbol sym. In terms
of the grammar, we should add a new rule nt → sym. Thus,
when passed an argument Inm m we add this new rule before
recursively invoking the underlying parser p. The right component
is unchanged except that as an optimization we return only unique
results.

As well as mkntparser, we have an auxiliary function
mktmparser whose purpose is similar: to introduce concrete names
for terminals. This is necessary because the middle component m,
as well as accumulating the grammar rules in the field m.rules7,
also accumulates named terminal parsers in the field m.tmparsers7.

8. Example

We can now define an example parser. At this stage, we have no
way to construct an oracle automatically, so we will hand code this
aspect of the parser. In addition, we have not dealt with the parsing
context, so we will not be able to handle all context-free grammars.

We will construct a parser for the grammar E -> E E E |
"1". We will make use of the raw parser raw a1 from Section 5.
First, we define our terminal parser:

let a1 = mktmparser "1" raw a1

We can now define the parser parse E. For the actions, we will
simply count the number of 1s that we parse.

let rec parse E = (fun i → mkntparser’ "E" (
((parse E ⊗ parse E ⊗ parse E) ≫ (fun (x, (y, z)) → x + y + z))
⊕ (a1 ≫ (fun → 1))) i)

The definition is straightforward. Recall that the sequencing
combinator makes use of the oracle to split the input; in order to
run our parser on some input, we need to deal with the oracle in
some way. At this point, we simply hand code the oracle.

The role of the oracle is to determine, given two symbols
sym1, sym2, where to cut an input substring SS(s, i, j) into two
pieces SS(s, i, k) and SS(s, k, j), so that the first can be parsed as
sym1 and the second can be parsed as sym2.

let oracle = (fun (sym1, sym2) → fun (SS(s, i, j)) → . . .)

For parse E there are two uses of the sequencing combinator: one
corresponding to the occurrence of the combinator in the expres-
sion parse E ⊗ parse E, and one to the first occurrence of the com-

binator in the expression parse E ⊗ (parse E ⊗ parse E)8. There
are two nonterminals that can occur as arguments to the sequencing
combinator, the nonterminal E, and the nonterminal (E*E). Note
that nonterminal E corresponds to inputs which are non-empty se-
quences of the character 1. So nonterminal (E*E) corresponds to
sequences of 1s of length at least two. We introduce an auxiliary
function upto’ such that upto’ i j = [i + 1; . . . ; j − 1]. Then for
this example, the oracle may be coded as follows:

8 Recall that the sequencing combinator associates to the right.

6 2014/3/2

let oracle = (fun (sym1, sym2) → fun (SS(s, i, j)) →
match (sym1, sym2) with
| (NT "E",NT("(E*E)")) → (upto’ i (j − 1))
| (NT "E",NT("E")) → (upto’ i j))

We can define a function to run a parser on a given input, assuming
the existence of the oracle:

let run parser3’ oracle p s = (
let i0 = 〈

ss4 = (SS(s, 0, String.length s));
lc4 = empty context;
oracle4 = oracle 〉 in

let rs = dest inr (p (Inr i0)) in
unique rs)

This simply evaluates the right component of the parser and returns
unique results. We can now run the parser in the OCaml top-level,
and OCaml responds with the expected result:

let = run parser3’ oracle parse E "1111111"
− : int list = [7]

We can examine the left and middle components of our example
parser.

let = sym of parser parse E
− : symbol = NT "E"

More interesting is the middle component:

let m = grammar of parser parse E
val m: mid = 〈rules7 = [("(E*E)", Seq (NT "E", NT "E"));

("(E*(E*E))", Seq (NT "E", NT "(E*E)"));
("((E*(E*E))+1)", Alt (NT "(E*(E*E))", TM "1"));
("E", Atom (NT "((E*(E*E))+1)"))];

tmparsers7 = [("1", < fun >)]〉

The result is a record m. The m.rules7 field contains a concrete
representation of the grammar, with nonterminals corresponding to
every use of the sequencing and alternative combinators. In addi-
tion, the m.tmparsers7 field represents a finite map from terminals
to the corresponding raw parsers. In this example, there is only one
entry for the terminal "1".

In this section we have worked through the definition of a simple
parser, and seen how the machinery introduced in previous sections
allows us to extract a concrete representation of the grammar from
code such as parse E. With a concrete representation of the gram-
mar, we can then use a method such as Earley parsing to perform a
parse of the input, determine the information necessary to construct
an oracle, and then finally use the oracle to seed the action phase of
the parse.

9. Earley parsing and construction of the oracle

In this section we describe how we construct an oracle from the
results of an Earley parse. For an explanation of Earley parsing
itself we refer the reader to the original paper [6].

Earley parsing involves Earley items, which are tuples of the
form (X,α, β, i, j), typically written (X → α.β, i, j). These
items are relative to some input string s and grammar Γ. Such
an item can only arise if there is a rule X → α β ∈ Γ. The
interpretation of such an item is that Γ ⊢ α →∗ si,j .

Earley parsing is initialized with a single Earley item (S →
.β, 0, 0), where S is the start symbol. When Earley parsing fin-
ishes, it returns a finite set of items, which include all items which
correspond to parse trees for the input s. A complete set of Ear-
ley items constitutes a compact representation of all possible parse
trees.

It is possible to construct an Earley parser that returns Ear-
ley productions rather than items. An Earley production is a pair
consisting of an item and an additional integer l, written (X →
α.β, i, j, l). For productions, the β component is non-empty, that
is, β is of the form Y β′ for some symbol Y . A production (X →
α.Y β′, i, j, l) should be interpreted as follows: (X → α.Y β′, i, j)
is an Earley item i.e. Γ ⊢ α →∗ si,j , and Γ ⊢ Y →∗ sj,l.

In cases where α is non-empty, a production has the form
(X → α′Z.Y β′, i, j, l). If we work with grammars where the
right-hand-side has at most two symbols, such a production has
the form (X → Z.Y, i, j, l). These productions provide exactly the
information required by the oracle: if we wish to parse the input
between positions i and l, for the symbols Z and Y , we should
cut the input at position j (note that the cut position is now the j
component of the Earley item). We introduce the following types
to represent Earley items and productions:

type item = 〈 nt2 : nonterm;
a2 : symbol list; b2 : symbol list; i2 : int; j2 : int 〉
type production = item × int

The interface to the Earley parser is via the following function:

let earley prods of parser p s = . . .

This is a function of type α parser3 → string → production list.
Given a parser and an input string, it returns a list of productions.
We can process these productions to produce an oracle.

let oracle of prods ps = (fun (sym1, sym2) → fun (SS(s, i’, j’)) →
let f1 (itm, l) = (itm.a2 = [sym1])
&& (itm.b2 = [sym2])
&& (i’, j’) = (itm.i2, l)
in
let ps = List.filter f1 ps in
List.map (fun (itm,) → itm.j2) ps)

Applying oracle of prods to a list of produc-
tions ps gives an oracle, that is, a function of type
(symbol × symbol) → substring → int list. The function
simply picks out those productions (X → α.β, i, j, l) where α is
the single symbol sym1, β is the single symbol sym2, and the span
(i, l) corresponds to the span (i′, j′) of the substring that we want

to parse. The cut indexes are simply those j for such productions9.

10. Example, with Earley parsing

We continue the example from Section 8. Deriving the productions
for a given input and constructing the oracle is straightforward:

let ps = earley prods of parser parse E "1111111"
let oracle = oracle of prods ps

We can query the oracle, for example, to find out where to split the
input if we wish to parse a sequence of two symbols:

let = oracle (NT "E",NT "(E*E)") (SS("1111111", 0, 7))
− : int list = [1; 3; 5]

The resulting list [1; 3; 5] reveals that the sequence of two nontermi-
nals E (E*E) can be used to parse an input "1111111" by splitting
the input at positions 1, 3 and 5.

In Section 8 we hand coded the oracle. We can now improve on
this by automatically constructing the oracle from the parser itself.

let run parser3 p s = (
let ps = earley prods of parser p s in
let oracle = oracle of prods ps in
run parser3’ oracle p s)

9 The definition of oracle of prods given here is solely for expository pur-
poses; a more efficient implementation is provided in the online distribution.

7 2014/3/2

E

E E

"1"

E

ǫ ǫ

pt

pt
′

Figure 3.

We can then run our parser in the OCaml top-level as before:

let = run parser3 parse E "1111111"
− : int list = [7]

11. Context

We cannot yet handle all context-free grammars, at least during the
action phase. For this, we need the notion of parsing context. In
this section we recall the essential definitions. We also show how
parsing context may be smoothly combined with the machinery
developed in previous sections. For reasons of space, we give an
informal presentation, covering the main ideas, but omitting formal
definitions and theorems which can be found in [17].

Consider the grammar E -> E E E | "1" | ǫ. This gram-
mar is highly ambiguous. It also gives rise to infinitely many parse
trees. In Fig. 3 we show a parse tree formed from this grammar
(the leaves are decorated with strings rather than substrings). Note
that pt and pt′ are rooted at the same nonterminal, correspond to
the same string (a string consisting of a single 1), and pt’ is prop-
erly contained in pt. If such a situation can occur then the grammar
gives rise to an infinite number of parse trees. Moreover, this is the
only way an infinite number of parse trees can arise. We call a parse
tree bad if it contains a subtree such as pt. If we rule out bad trees,
we can still find a good tree for any parse-able input: the operation
of replacing subtrees such as pt by subtrees pt′ that are contained in
pt defines a reduction process on parse trees, which preserves the
parsed input. Thus, for a given grammar we have identified a class
of parse trees (the good parse trees) that is complete (any string
that can be parsed, can be parsed to give a good parse tree) and
moreover is finite.

We wish to restrict parsing to only the good parse trees. To
this end, at a given node the combinator parser records the current
nonterminal and input string in a parsing context. If the parser
encounters the same nonterminal and input string while parsing a
subtree, the parse should be abandoned. The context consists of a
finite set (represented by a list) of pairs, where each pair consists of
a nonterminal, and the input substring.

For example, at the root of pt, the context is initially empty.
The parser adds the entry ("E", SS("1", 0, 1)) corresponding to
the root of pt before parsing the subtrees. When the parser reaches
pt′, it constructs the entry ("E", SS("1", 0, 1)) corresponding to
the root of pt′ and checks whether it is already contained in the
context. In this case, the entry is contained in the context, and the
parse is abandoned.

The implementation of contexts (finite sets) as lists is straight-
forward. We need a function to update the context at a node, and
a function to check whether the item corresponding to a node is
already contained in the context.

let update context (LC(lc)) (nt, SS(s, l, h)) = (
LC((nt, SS(s, l, h)) :: lc))

let context contains (LC(lc)) (nt, SS(s, l, h)) = (
List.exists (fun x → x = (nt, SS(s, l, h))) lc)

We can then lift the function update context to the input type:

let update lc4 nt p = (fun i → match i with
| Inr i →
p (Inr 〈 i with lc4 = (update context i.lc4 (nt, i.ss4)) 〉)
| → p i)

This function takes a string nt such as "E" representing the nonter-
minal at the current node, and a parser p representing the parser for
that nonterminal, and updates the context before calling the under-
lying parser on the input.

When executing a parser for nonterminal nt on input i, we first
need to check whether the entry (nt, i.ss4) already occurs in the
context. If so, we should abandon the parse. Otherwise, we should
update the context and continue.

let check and upd lc4 p = (fun i → match i with
| Inr i → (let (f, g, h) = unsum3 p in
let NT nt = sym of parser p in
let should trim = context contains i.lc4 (nt, i.ss4) in
if should trim then Inr [] else update lc4 nt p (Inr i))
| → p i)

The function check and upd lc4 p affects only the right compo-
nent. It first determines the nonterminal nt corresponding to p. It
then checks whether the entry (nt, i.ss4) is already contained in the
context. If so, it abandons the parse and returns the empty list of
results. Otherwise it updates the context and calls the underlying
parser p. Finally, we construct the function mkntparser:

let mkntparser nt p = (check and upd lc4 (mkntparser’ nt p))

With these definitions, we can now handle all context-free gram-
mars.

We make two further observations that are relevant to the discus-
sion in Section 13 of the memoization of functions (such as parsers)
which take contexts as arguments. The first is that contexts are fi-
nite sets, so that we might consider using sorted lists to represent
contexts. The second observation is that many contexts are equiva-
lent in the way they affect a parse. Suppose the entry for the current
node is of the form (nt, SS(s, i, j)). All entries in the context will
be of the form (nt’, SS(s, i’, j’)), where i′ ≤ i, j ≤ j′. If in fact
i′ < i (or j < j′) then that entry in the context will not cause
the parse to be abandoned at the current node. Nor will it cause
the parse to be abandoned for any descendants of the current node.
Such entries are therefore irrelevant. Contexts which are identical
but for the presence of irrelevant entries are equivalent in the way
they affect a parse. Given a substring ss, we can normalize a given
context to remove irrelevant entries:

let normalize context (LC(lc)) ss = (
LC(List.filter (fun (nt, ss’) → ss’ = ss) lc))

In Section 13, memoization performs best when contexts are nor-
malized, and represented using sorted lists.

12. Example, with context

Consider the grammar E -> E E E | "1" | ǫ. We can define a
parser for this grammar as follows.

let rec parse E = (fun i → mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E) ≫ (fun (x, (y, z)) → x + y + z))
⊕ (a1 ≫ (fun → 1))
⊕ (eps ≫ (fun → 0))) i)

8 2014/3/2

Compared to previous examples, the difference is that we can
now parse the empty string ǫ as the nonterminal "E". This in turn
gives rise to an infinite number of parse trees. However, our parsers
can now handle such grammars easily.

let = run parser3 parse E "1111111"
− : int list = [7]

At this point, we have developed parser combinators that can han-
dle all context-free grammars. However, parsing is still slow be-
cause, during the action phase, a parser such as parse E may be
called many times on the same substring. To make our parsing effi-
cient we need to use memoization to avoid repeated work.

13. Memoization

Memoization of a function f involves maintaining a partial map,
known as a lookup table, from arguments i to values f i. Instead
of computing f on a argument i, memoization first checks whether
the value is already stored in the table. If so, the value is returned
without further computation involving f . Otherwise, the value of
f i is computed, the table is updated, and the value is returned.
Memoization is only valid if f behaves as a pure function. A direct
implementation using OCaml hashtables is as follows:

let memo tbl f i = (
if (Hashtbl.mem tbl i) then (Hashtbl.find tbl i)
else (let v = f i in let = Hashtbl.add tbl i v in v))

Here, arguments are uninterpreted, however, it is often the case
that several arguments i1, i2, . . . should be considered equivalent
because the values f i1, f i2, . . . are the same. If we have stored
the result of evaluating f i1 in the memo table, we would like to
reuse this value to avoid computing f i2. To handle this case, we
extend the memo function with an auxiliary function key of input
that computes a key k from an input i. It is expected that i1, i2, . . .
will all map to the same key, and arguments i, i′ should map to the
same key only if f i = f i′. The index into the memoization table
is now the key, rather than the argument itself.

let memo tbl key of input f i = (
let k = key of input i in
match k with | None → (f i) | Some k → (
if (Hashtbl.mem tbl k) then (Hashtbl.find tbl k)
else (let v = f i in let = Hashtbl.add tbl k v in v)))

The function key of input may return None, which indicates that
the value for the given argument should not be memoized. For a

parser p, we wish to memoize only the right component10.

let key of input i = (match i with
| Inr i → (let lc = normalize context i.lc4 i.ss4 in
let k = (lc, i.ss4) in Some k)

| → None)

Note that the right component of a parser accepts arguments Inr i
which, in addition to the substring component i.ss4 also include a
context i.lc4 and an oracle i.oracle4. The oracle does not change
during the action phase, and so need not be considered when mem-
oizing. So the input to a parser is effectively a pair of a context
and a substring. As observed in Section 11, memoization performs
best when the context is normalized relative to the input string at
the current node, so we use the function normalize context to nor-
malize i.lc4 when constructing the key. It is now straightforward to
memoize a parser:

let memo p3 tbl p i = (memo tbl key of input p i)

10 P3 differs from mini-P3 in that it uses boxing [2] to enable quick compu-
tation of hashcodes for substrings.

At this point, we have defined all the functions necessary to under-
stand the example in Section 3.

14. Experiments and performance

In this section we discuss performance, mainly by comparing our
approach to the popular Haskell Happy parser generator [1]. We as-
sess the performance of P3 and Happy across 5 different grammars.
P3 outperforms Happy on all of these grammars, often by a large
margin. There are clear opportunities to improve the performance
of P3 even further, so these initial results are extremely encourag-

ing11.
Why Happy? We should compare P3 against a parser that can
handle all context-free grammars: On restricted classes of gram-
mar, we expect that P3 has good asymptotic performance, but ab-
solute performance will not compare favourably with specialized
parsing techniques. For example, P3 should probably not be used
to parse XML if absolute performance is the priority. We car-
ried out preliminary experiments with general parsers such as AC-

CENT12, Elkhound13 and SPARK14, but encountered problems that
were seemingly hard to resolve. For example, the author of SPARK
confirmed that SPARK cannot directly handle grammars such as E
-> E E E | "1" | ǫ. The underlying reason appears to be that
SPARK does not make use of a compact representation of parse
trees, but works instead with abstract syntax trees, which is prob-
lematic in this case because a single input can give rise to a possibly
infinite number of parse trees. On the other hand, it was relatively
straightforward to code up example grammars in Happy, and ex-
tract the results using a compact representation. We believe Happy
represents a demanding target for comparison because it is mature,
well-tested and extensively optimized code. For example, the au-
thors of the Parsec library take Happy performance to be almost

the definition of efficiency15.
What to measure? We measure the time taken for each of the three
phases separately. First we compare the time to compute a compact
representation of all parses. This involves comparing our core im-
plementation of Earley’s algorithm with the core GLR implemen-
tation in Happy. Second, we examine the overhead of constructing
the oracle. Third, we examine the cost of applying parsing actions.
As a very rough guide, we expect the Earley parsing phase to be
O(n3). The construction of the oracle essentially involves iterating

over the list of productions, which is O(n3) in length, so we might

expect that this phase should also take time O(n3). The time taken
to apply the actions depends on the actions themselves, but we can
analyse particular actions on a case-by-case basis to check that the
observed times for this phase are reasonable.
Earley implementation P3 relies on a back-end parser. P3 termi-
nal parsers are very general, whereas existing Earley implementa-
tions expect terminal parsers to parse a single character. For this
reason, it was necessary to extend Earley’s algorithm to treat cor-
responding “terminal items”. We implemented an Earley parser
from scratch in OCaml, emphasizing both functional correctness
and performance correctness (i.e. the implementation should have
worst-case O(n3) performance). For our implementation it should
be possible to mechanize correctness proofs for functional correct-
ness (the traditional target of verification) and performance correct-
ness (which as far as we are aware has not been tackled by the veri-
fication community for non-trivial examples). The implementation

11 Details of the test infrastructure can be found in the online resources.
12 http://accent.compilertools.net/
13 http://scottmcpeak.com/elkhound/
14 http://pages.cpsc.ucalgary.ca/~aycock/spark/
15 ”[Our real-world requirements on the combinators]. . . they had to be
efficient (ie. competitive in speed with happy and without space leaks)” [14]

9 2014/3/2

is purely functional, but is parameterized by implementations of
sets and maps. The sets and maps are used linearly, so it is safe
for the compiler to substitute implementations which use mutable
state and in-place update. The OCaml compiler does not support
this optimization currently, so we introduce mutable set and map
implementations manually. The timings we give here are for the
default configuration which uses mutable state in cases where the
input length is less than 10000, and purely functional datastructures
otherwise. Falling back on purely-functional datastructures results
in worst-case O(n3.ln2 n) performance, but has the advantage that
space consumption is typically much reduced, which allows us to
tackle much bigger inputs than would be possible with a solely im-
perative implementation. Of course, for the user the library always
behaves as though it is purely functional.
Grammars and inputs We selected 5 grammars as representative
examples of general context-free grammars. These are:

Identifier Grammar

aho s S -> "x" S S | ǫ
aho sml S -> S S "x" | ǫ
brackets E -> E E | "(" E ")" | ǫ
E EEE E -> E E E | "1" | ǫ
S xSx S -> "1" S "1" | "1"

The grammars aho s and aho sml are taken from a well-known
book on parsing [3]. They were used to assess parser performance
in related work [9]. The grammar brackets is a simple grammar
for well-bracketed expressions. The grammar E EEE is the example
grammar we have used throughout the paper. It has no “left-right”
or “right-left” bias, which is not the case for aho s and aho sml.
The final grammar S xSx is an example of a non-ambiguous gram-
mar that cannot be handled using Packrat parsing, taken from [7].

We used binarized versions of these grammars when measuring
the performance of our Earley parser, because the P3 library feeds
only binarized grammars to the Earley parser. We tried to check
whether binarized versions of the grammars improved the perfor-
mance of Happy, but at least with a binarized version of the gram-
mar E EEE, Happy appeared to hang on non-empty input strings.

For inputs, we simply used strings consisting of the characters x
or 1, or well-bracketed expressions, of varying lengths. For S xSx
all inputs were of odd length.16

Results: computation of compact representation Our Earley
parser clearly outperformed Happy across all grammars. For the
grammars aho s and E EEE the results are dramatic. For example,

here are the results for aho s17:

Size Happy parse time Earley parse time

20 0.10 0.10
40 3.18 0.10
60 28.88 0.11
80 144.50 0.13

100 512.09 0.17

16 We also experimented with a large real-world grammar, the current
OCamlyacc grammar for OCaml. For a sample 7,580 byte OCaml program,
parsing takes over 10s, whereas the standard OCaml parser can parse this
file in a fraction of a second. OCamlyacc has several features, such as prece-
dence and associativity annotations, which make parsing deterministic. Our
Earley implementation does not have such features, and thus produces all
possible parses ignoring precedence and associativity. Future work should
investigate supporting these sorts of annotation in Earley parsing, in order
to make our approach competitive with OCamlyacc on the restricted class
of grammars supported by OCamlyacc.
17 All times in this section are measured in seconds. All sizes are measured
in characters.

For the grammars aho sml and S xSx, Earley clearly outper-
forms Happy, but the results are within an order of magnitude or
two. For example, here are the results for aho sml:

Size Happy parse time Earley parse time

100 0.22 0.19
200 2.22 0.53
300 9.75 1.24
400 28.56 2.61
500 71.08 4.42

Finally the grammar brackets caused Happy to appear to loop

when parsing input, possibly due to a bug in Happy18. In addition to
absolute performance, we can also check whether our Earley parser
has the expected time complexity. Across all grammars we observe
that our Earley implementation has worst-case performance O(n3)
with mutable set and map implementations, and O(n3.ln2 n) with
purely functional set and map implementations.

In conclusion, Earley clearly outperforms Happy on all gram-
mars, sometimes dramatically so. On several grammars, Happy ap-
peared to loop when attempting to parse inputs. We believe our
Earley implementation is one of the fastest general parsers in exis-
tence, and we welcome suggestions for further systems to compare
against.
Results: oracle construction How long should we expect the con-
struction of the oracle to take? One way to construct the oracle is by
iterating over the O(n3) Earley productions. We expect that oracle

construction should be O(n3), and this is what we observe in prac-
tice. For example, for the grammar E EEE, the times for the Earley
phase, and the times to construct the oracle, are:

Size Earley parse time Oracle construction time

100 0.21 0.35
200 0.67 2.33
300 1.84 6.68
400 3.68 15.21

We note that it may be possible to construct the oracle, using
mutable state, in time O(n2), but we leave optimization of this
phase to future work. We also note that even with oracle construc-
tion, our approach outperforms Happy across all grammars.
Results: applying parsing actions We now examine the overhead
of applying parsing actions. Our approach restricts to good parse
trees, which are finite in number. Parsers such as Happy do not
restrict to good parse trees, and so attempting to construct parse
trees, or apply actions to, parsing results for a grammar such as E
-> E E E | "1" | ǫ will result in non-termination. Thus, it is
not possible to compare the performance of P3 and Happy in this
area, but we can look at the behaviour of P3 itself.

How long should we expect the action phase to take? Consider
the aho s grammar S -> "x" S S | ǫ, where the actions count
the number of characters parsed. Without memoization we expect
the action phase to take an exponential amount of time. With
memoization we can argue as follows. Suppose the time to apply
the actions is dominated by the non-memoized recursive calls,
so that we can ignore the time taken for memoized calls. There
are O(n2) non-memoized calls to parse an S (corresponding to
different spans (i, j) of the input string). For each call, the input
must be split in O(n) places, and the single result from each
subparse combined. Thus, each call takes O(n) time, giving an

overall O(n3) execution time for the action phase. In practice, the

18 Reported to the authors of Happy on 2013-06-24.

10 2014/3/2

time taken to look up a precomputed value in the memoization
table cannot be ignored, thus we observe slightly worse than O(n3)
performance. In the following, we include times for all phases to
give an idea of the relative costs. Using a naive estimation technique
puts the action phase at O(n3.2).

Size Earley phase Oracle phase Action phase

100 0.19 0.05 0.22
200 0.49 0.50 2.18
300 1.15 2.19 6.25
400 2.49 4.60 15.4
500 4.35 9.10 31.4

For the grammars aho sml and E EEE one can reason similarly.
The grammar brackets might be expected to have similar perfor-
mance O(n3) when applying the actions. If the input consists of
alternating left and right brackets, this is the case. Our example in-
puts consist of relatively few blocks of deeply nested brackets, so
that most recursive calls execute in constant time rather than O(n),
and overall the observed performance is closer to O(n2). Finally,
consider the following code for the grammar S xSx:

let rec parse S xSx = (fun i → memo p3 tbl (mkntparser "S" (
((a1 ⊗ parse S xSx ⊗ a1) ≫ (fun (, (x,)) → 2 + x))
⊕ (a1 ≫ (fun → 1)))) i)

For an input of length n+1 there should be n/2 recursive calls
when applying the actions, each of which takes a constant time
to execute, giving expected O(n) cost for applying the actions. In
practice, the time to apply the actions is negligible compared to the
other two phases.

In summary, the action phase appears to behave according to a
straightforward complexity analysis.
Conclusion The Earley parser outperforms Happy across all gram-
mars, often dramatically so. Even though these results are very
good, we note that the performance of our Earley parser is not
critical: our approach can be adapted to use any general parsing
implementation as a back end, so we can take advantage of faster,
optimized back-end parsers if they become available.

Constructing the oracle currently involves processing all pro-
ductions from the Earley stage. A more intelligent approach would
be to process only those productions that contribute to a valid parse.
For example, for the grammar S xSx there are only O(n) such
items. This optimization should reduce the oracle construction time
significantly for many grammars. It may also be possible to use
imperative programming techniques to reduce oracle construction
time to O(n2), but we leave this to future work.

Finally, the observed cost of applying the actions for our chosen
grammars agrees with a basic complexity analysis, but there is
some scope for reducing the real-world execution time further e.g.
by using more sophisticated memoization techniques.

Overall, our implementation meets the expected worst-case
bound of O(n3) for parsing and oracle construction, and has very
good real-world performance. For the action phase, the asymptotic
performance also appears optimal. For all phases, there is scope for
improving the real-world performance still further.

15. Correctness

The focus of this paper is on presenting the main ideas involved
and providing evidence of parsing performance, but here we briefly
sketch a proof that our approach is sound and complete in the sense
of our previous work [17]. Correctness falls into several parts: cor-
rectness of the Earley implementation and oracle construction, and
correctness of the parsing combinators given a correct oracle. Func-
tional correctness of the Earley implementation involves defining

“partial parse trees” corresponding to Earley items, and then con-
ducting a fairly routine proof of correctness of the Earley imple-
mentation: items correspond to partial parse trees, completed items
correspond to complete parse trees, and the Earley algorithm is
sound (any item it generates corresponds to a partial parse tree) and
complete (it generates all items). Correctness of oracle construction
requires showing that, given grammar Γ and input s, if the oracle is
provided with nonterminals A and B and indices i, j, and if k is re-
turned in the result list, then Γ ⊢ A →∗ si,k, and Γ ⊢ B →∗ sk,j .
This follows directly from the correctness of the Earley implemen-
tation, and the definition of oracle construction in terms of Earley
productions. Finally, correctness of the parsing combinators essen-
tially involves showing that the parsing context permits all good
parse trees to be returned. This proof was mechanized in [17] for
related combinators and prefix-parsing.

In fact, the Earley implementation was developed with partial
mechanized definitions and proofs. Probably because of this, we
have never found a bug in our Earley implementation, despite
extensive use over the last 12 months. The code is sufficiently
complex that a hand proof of correctness would almost certainly
contain errors. In future work, we intend to provide mechanized
proofs of functional and performance correctness.

16. Related work

Research on parsing has been carried out over many decades by
many researchers. We cannot hope to survey all of this existing
work, and so we here restrict ourselves to consideration of only
the most directly related work. The first parsing techniques that
can handle arbitrary context-free grammars are based on dynamic
programming. Examples include CYK parsing [12] and Earley
parsing [6]. The popular GLR parsing approach was introduced
in [20]. Combinator parsing and related techniques are probably
folklore. An early approach with some similarities is [16]. Versions
that are clearly related to the approach taken in this paper were
popularized in [11].

The extension of combinator parsing to handle all context-free
grammars using a parsing context, as in this paper, appears in [17].
As described in that paper, the use of a parsing context is related to
a long line of work that uses the length of the input to force termi-
nation [8–10]. The performance of this approach is O(n5), which
is not competitive with the approach presented here (as confirmed
by real-world experiments, which we omit for space reasons). Ex-
periments showed that this previous approach outperformed Happy
on the grammar E EEE, but it seems clear that Happy has very poor
performance on many such grammars (certainly not the expected
O(n3) of the underlying GLR algorithm).

Our work is motivated by the desire to provide a combinator
parsing interface with performance competitive with O(n3) gen-
eral algorithms such as Earley parsing. In [18] the authors “develop
the fully general GLL parsing technique which is recursive descent-
like, and has the property that the parse follows closely the struc-
ture of the grammar rules”. The desire is to improve on the short-
comings of GLR: “Nobody could accuse a GLR implementation
of a parser for, say, C++, of being easy to read, and by extension
easy to debug.” This work is very similar in its aims to ours. Proto-
type hand-coded implementations of recognizers for several gram-
mars, based on the GLL algorithm, are described in [18]. These do
not provide a combinator parsing interface. An implementation of
GLL in Scala that provides the desired combinator parsing interface

can be found online19 but the author admits “at the moment, per-
formance is basically non-existent.” However, we believe that the
GLL algorithm represents the main competition to our approach

19 http://www.cs.uwm.edu/~dspiewak/papers/
generalized-parser-combinators.pdf

11 2014/3/2

and we eagerly await future efficient implementations which pro-
vide a combinator parsing interface.

17. Conclusion

We presented an approach to parsing that provides a flexible inter-
face based on parsing combinators, together with the performance
of general approaches such as Earley parsing. The contributions of
our work are:

• We introduced the idea of using an oracle as a compact, func-
tional representation of parse results. This contrasts with tradi-
tional representations such as shared packed parse forests [4],
which are essentially state-based representations. Although the
notion of an oracle is not new [13], the idea of using an oracle
as the basis of a parsing implementation is novel.

• We introduced the design of a parsing library split into a front-
end combinator parsing library, and a back-end parser (here
based on Earley’s algorithm), connected via the oracle. This
combines the well-known benefits of combinator parsing with
the efficiency of general-purpose parsing algorithms such as
Earley. This separation has many benefits, for example, the
combinator parsers are very simple to implement, and the back-
end parser can be swapped, potentially increasing performance
without altering the combinator interface. This split also allows
examples, such as those in Section 3, that are not possible with
any other parser currently available.

• To allow arbitrary functions (of the correct type) to be used
as terminal parsers, we extended Earley parsing to deal with
“terminal items”.

• We engineered a back-end Earley implementation. This im-
plementation is functionally correct, and is observed to fit the
worst-case time bound of O(n3) across all our example gram-
mars. As a general parser, it has very good real-world per-

formance, outperforming the Haskell Happy parser generator20

across all our example grammars, often dramatically so. In fu-
ture work, we intend to give mechanized proofs of functional
and performance correctness for this back-end parser.

• We provided the results of real-world experiments that support
our performance claims.

• We showed how to define front-end parsing combinators which
allow a concrete representation of the grammar (and terminal
parsers) to be extracted in order to be fed to the Earley parser.
These combinators then use the results of Earley parsing to
guide the action phase. We argued that the performance of
the action phase, when memoized, was asymptotically close
to optimal. No other parsers (apart from [17] which is O(n5))
support applying actions when working with arbitrary context-
free grammars, so a real-world comparison is unfortunately not
possible. This paper gives almost the full code for the front-end
parsing combinators.

• We showed how to integrate cleanly many different techniques,
including combinator parsing, Earley parsing, the oracle, mem-
oization, and parsing contexts. In addition the online distribu-
tion integrates the technique of boxing, allowing the input type
to be arbitrary. This permits both scannerless parsing, and pars-
ing with an external lexer. Even with all these different tech-
niques, the code is extremely concise and simple.

• We showed how to combine semantic action functions with an
Earley parser. For example, using our approach it is trivial to

20 ACCENT, Elkhound and SPARK are not competitive here, see Sec-
tion 14.

define parsers that return parse trees, see Section 3. For other
techniques, such as GLL, even the construction of parse trees
can be a significant research contribution [19].

• We developed extensive examples, available in the online dis-
tribution. For example, these illustrate how to incorporate tra-
ditional aspects of parsing, such as precedence and associativ-
ity, in the action phase of our parsers. Further examples illus-
trate the power of combinator parsing for arbitrary context-free
grammars.

References

[1] Happy, a parser generator for Haskell. http://www.haskell.org/
happy/.

[2] U. A. Acar, G. E. Blelloch, and R. Harper. Selective memoization.
POPL ’03, pages 14–25. ACM, 2003.

[3] A. V. Aho and J. D. Ullman. The theory of parsing, translation, and

compiling. Prentice-Hall, Inc., 1972.

[4] R. Atkey. The semantics of parsing with semantic actions. In LICS

’12, pages 75–84. IEEE, 2012.

[5] A. Barthwal and M. Norrish. A mechanisation of some context-free
language theory in HOL4. Journal of Computer and System Sciences,
2013.

[6] J. Earley. An efficient context-free parsing algorithm. Commun. ACM,
13(2):94–102, 1970. ISSN 0001-0782. .

[7] B. Ford. Packrat parsing: simple, powerful, lazy, linear time, func-
tional pearl. In ICFP ’02, pages 36–47. ACM, 2002.

[8] R. A. Frost, R. Hafiz, and P. C. Callaghan. Modular and efficient top-
down parsing for ambiguous left-recursive grammars. In IWPT ’07,
pages 109–120. ACL, 2007.

[9] R. A. Frost, R. Hafiz, and P. Callaghan. Parser combinators for am-
biguous left-recursive grammars. In PADL, pages 167–181. Springer,
2008.

[10] R. Hafiz and R. A. Frost. Lazy combinators for executable speci-
fications of general attribute grammars. In PADL, pages 167–182.
Springer, 2010.

[11] G. Hutton. Higher-order functions for parsing. J. Funct. Program., 2
(3):323–343, 1992.

[12] T. Kasami. An efficient recognition and syntax analysis algorithm for
context-free languages. Technical Report AFCRL-65-758, Air Force
Cambridge Research Laboratory, Bedford, Massachusetts, 1965.

[13] L. Lee. Fast context-free grammar parsing requires fast boolean matrix
multiplication. Journal of the ACM (JACM), 49(1):1–15, 2002.

[14] D. Leijen and E. Meijer. Parsec: A practical parser library. Electronic

Notes in Theoretical Computer Science, 41(1):1–20, 2001.

[15] J. M. I. M. Leo. A general context-free parsing algorithm running
in linear time on every LR(k) grammar without using lookahead.
Theoretical Comp. Sci., 82(1):165 – 176, 1991.

[16] V. R. Pratt. Top down operator precedence. In Proceedings ACM

Symposium on Principles Prog. Languages, 1973.

[17] T. Ridge. Simple, functional, sound and complete parsing for all
context-free grammars. In CPP, pages 103–118. Springer, 2011.

[18] E. Scott and A. Johnstone. GLL parsing. Electronic Notes in Theoret-

ical Computer Science, 253(7):177–189, 2010.

[19] E. Scott and A. Johnstone. Gll parse-tree generation. Science of

Computer Programming, 78(10):1828–1844, 2013.

[20] M. Tomita. LR parsers for natural languages. In Proc. of the 10th Int.

Conf. on Computational linguistics, pages 354–357. ACL, 1984.

12 2014/3/2

