
A Rely-Guarantee proof system for x86-TSO

Tom Ridge

University of Leicester

Abstract. Current multiprocessors provide weak or relaxed memory
models. Existing program logics assume sequential consistency, and are
therefore typically unsound for weak memory. We introduce a novel Rely-
Guarantee style proof system for reasoning about x86 assembly programs
running against the weak x86-TSO memory model. Interesting features
of the logic include processor assertions which can refer to the local state
of other processors (including their program counters), and a syntac-
tic operation of closing an assertion under write buffer interference. We
use the expressivity of the proof system to construct a new correctness
proof for an x86-TSO version of Simpson’s four slot algorithm. Mech-
anization in the Hol theorem prover provides a flexible tool to support
semi-automated verification.

1 Introduction

Multiprocessors are now widespread, but real multiprocessors provide subtle
relaxed (or weak) memory models. Typically sequential consistency (SC) can be
recovered by appropriate programming disciplines eg the use of locks to guard
access to shared memory. However, there are several areas where the use of
locks is either not possible, or would impose unacceptably high performance
costs. For example, operating system lock implementations cannot assume that
locks are already provided, and non-blocking synchronization techniques avoid
the use of locks to provide good performance and strong progress guarantees.
However, these programs are directly exposed to the weak memory models of
the underlying processors, and consequently there is often considerable doubt
about whether they are correct [Lin99]. Unfortunately existing program logics
are typically no longer sound in this setting.

Our main contribution in Sect. 5 is a proof system for processors executing
x86 assembly code with the x86-TSO memory model, proved sound with respect
to the operational semantics. In Sect. 6 we show that the system is pragmatically
useful by using it to give a novel proof of Simpson’s four slot algorithm [Sim90].
The Hol mechanization1 is a formal version of this paper, including complete
definitions, formal proof rules, formal soundness proofs, the example application
to Simpson’s algorithm, and a mechanized proof environment to tackle further
examples. We now discuss some interesting features of our program logic.

A rigorous semantics for the relaxed x86-TSO memory model has been de-
fined in higher-order logic and mechanized in the Hol theorem prover [OSS09],

1 Available online at http://www.cs.le.ac.uk/people/tr61/vstte2010

see Sect. 3. We extend this model with an operational semantics for x86 assem-
bly code in Sect. 4. For x86-TSO, every processor is connected to main memory
by a FIFO write buffer modelled as a list of (address, value) pairs. Each write
buffer process repeatedly removes a write from the head of the queue, and com-
mits the write to main memory. A processor indirects via its write buffer: a read
returns the value of the last buffered write to the address, if any, otherwise the
value of the address in main memory, as usual. We treat write buffers as active

processes. This is not straightforward: in traditional models, processes cannot
write to or read from each other’s local state, whereas here a processor affects
the local state of its write buffer whenever it tries to write to a memory address.
For x86-TSO, a processor’s write buffer state is writable by that processor, but
inaccessible to other processors. The need for private state, that is shared between

two related processes, is built into our proof system. Write buffers also affect the
semantics of assertions. Traditionally, the validity of a process assertion should
not be affected by the behaviour of other processes. We require that the validity
is unaffected by the behaviour of the write buffer processes. Writing syntactic
assertions that satisfy this constraint is difficult, so we introduce a syntactic op-

eration of “closing an assertion under write buffer interference”. This is a key
step towards making x86-TSO verification tractable.

The main challenge of low-level x86 assembly code is the non-atomic nature

of individual instructions. For example, the moviload eax, ebx (indirect load) in-
struction loads the register eax with the value of the memory address pointed to
by ebx. This accounts for three separate memory/register read/writes. Interfer-
ence from other processors can occur between each of these steps. The problem
here is that individual instructions are not atomic. We do not give a general
solution, but try hard to make the proof rules as simple as possible.

In traditional proof systems the notion of state is restricted: program counters
(or equivalent) are not part of the state, and process assertions cannot refer
to the local state of other processes. We lift both these restrictions, thereby
dramatically increasing the expressivity of the system. The new elegant proof of
Simpson’s algorithm we present uses processor assertions that refer to the private

state of other processors. Moreover, it seems very natural to talk about processes
executing different regions of their code, and this essentially involves assertions
about processes’ program counters. A specific motivation for x86-TSO is that a
processor assertion will often refer to the state of the processor’s write buffer.
Unfortunately this increases the complexity of the proof rules. For example, the
familiar assertion {P} nop {P} is no longer valid eg if P is “the next instruction
is nop”, and nop is followed by a non-nop instruction. In order to recover the
familiar {P} nop {P} rule, we require that the assertion P is invariant under
changes to the processor’s current instruction. Fortunately these side conditions
are trivial in practice.
Notation Formal definitions have been lightly edited before inclusion here.
We use the following notation: function update (f ⊕ (x, y)); list concatena-
tion (xs ++ ys); head and tail of a list (HD xs and TL xs); records with
fields having values ({ fld = v; . . . }); record update of a field with a value

(r with { fld = v }); domain of a function (DOM f); image of a function or
relation on a set (IMAGE f S); restriction of the domain of a function or relation
to a set (f |S); function application (f pid or fpid).

2 Preview of the proof system

In this section we give the syntax and semantics of the main proof system judge-
ment informally. The familiar Hoare triple ⊢ {P} c {Q} is valid iff starting
from a state satisfying P , execution of the x86 assembly instruction c ends in a
state satisfying Q [Flo67,Hoa69]. To this we add the standard Rely-Guarantee
relations (R,G) to give the judgement (R,G) ⊢ {P} c {Q}: We now consider
the execution of c interleaved with steps of other processes, which we can as-

sume are approximated by the set of transitions R (Rely assumption). Dually
we must prove that G approximates c steps (Guarantee commitment) [Jon81].
The judgement is valid iff starting from P , executing c steps interleaved with
R steps, execution ends in Q and furthermore every c step is contained in G 2.
Finally we must address what happens when execution jumps to some other ad-
dress. We include in the judgement a component J such that J.invs is a partial
map from code points, to invariants that must hold when execution reaches that
point [CH72]. In the case that c terminates by jumping to a code point lbl, the
final state must satisfy J.invs lbl rather than Q. To this we add the processor
pid that is executing c and the code point ma of the current instruction (both of
which can typically be ignored) to get pid, (R,G), J, ma ⊢ {P} c {Q}. If the
judgement is valid, we write pid, (R,G), J, ma |= {P} c {Q}. Some example
judgements are:

– pid, ({}, {(s, s′) | T}), J, ma ⊢ {T} nop {ma = ma + 1; ci = [ma + 1]},
where the precondition {T} is unconstrained, and the post-condition states
that the current code point is ma + 1 and the current instruction is whatever
instruction was stored in memory at address ma + 1.

– pid, ({}, {(s, s′) | T}), J, ma ⊢ {J.invs lbl} jump lbl {⊥}, where the invariant
that must hold after the jump is already established in the pre-condition.

An example proof rule concerns the instruction movri(r, n), which sets local reg-
ister r to the value n:

wf (pid, (R, G), J, ma ⊢ {P} movri(r, n) {Q})
nop conditions pid P Q G

f = update f pid (λ ll. ll with { l = ll.l ⊕ (r, n); ci = nop })
IMAGE f P ⊆ Q f |P ⊆ G

pid, (R,G), J, ma |= {P} movri(r, n) {Q}
movri

The first condition checks that the judgement is well-formed, which includes the
usual Rely-Guarantee requirement that P and Q are closed under R 3. A formal

2 A key point for x86-TSO (but not in the semantics presented in this section) is that
R includes at least all those steps that can be taken by write buffers. Thus, to prove
a judgement valid using our proof system, it is necessary to take into account the
behaviour of all write buffers.

3 A set P is closed under a relation R iff for all s in P , for all s′, if (s, s′) in R then s′

is also in P .

definition of judgement well-formedness will be given shortly. In addition there is
a technical side-condition related to nop transitions, which can be safely ignored
for now. The operational semantics for movri(r, n) simply updates the local state
ll.l of processor pid at register r with the value n whilst also updating the current
instruction ci to nop. This is captured by the update function f . The judgement
is valid iff starting from a state s ∈ P , the update function results in a state
f s ∈ Q (ie IMAGE f P ⊆ Q), and in addition the update is allowed by the
guarantee G (ie f |P ⊆ G, where the function f is considered as a set of pairs).

3 The x86-TSO memory model

We briefly review the x86-TSO memory model [OSS09], which usefully abstracts
from the details of x86 assembly instructions. The model consists of processors
connected via write buffers to a single shared main memory. The model also
includes details of the per-processor local registers. Individual x86 instructions
can be locked (and so execute atomically) which is captured by a lock value
L, indicating which processor if any currently holds the lock. The states of the
x86-TSO machine are records with the following fields:

machine state = {
R : proc → reg → value option; // per processor registers
M : address → value option; // main memory
B : proc → (address × value) list; // per processor write buffers
L : proc option // which processor holds the lock, if any

}

The behaviour of the system is described by the labelled transition

relation s
lbl
−→ s′ in Fig. 1. The datatype of labels is label =

Tau | Evt of proc × action | lock of proc | unlock of proc where an action is
either a memory barrier or a read or write to a register or memory address. The
predicate not blocked s p holds if the lock is owned by processor p, or if the lock
is not held by any processor. The predicate no pending xs a checks that there
are no writes to address a in write buffer xs.

4 x86 assembly code

We rephrase the model of the previous section and extend it with a model of x86
assembly code. The syntax of assembly instructions is expressed as a datatype:

instruction =
| nop
| movri of reg name × value

| movrr of reg name × reg name

| movrm of reg name × data address

| moviload of reg name × reg name

| jump of flag condition × code point

| lock of instruction

| Barrier Mfence

| . . .

The state of the system, type S, is a record with a field g giving the contents
of the shared memory, a field f giving the local state for each processor, and a
field lck giving the processor that holds the lock, if any. The local state LL for
each processor consists of some code, the address of the current instruction ma,

Read from memory

not blocked s p s.M a = SOME v no pending (s.B p) a

s
Evt p (Access R (Location mem a) v)
−−−−−−−−−−−−−−−−−−−−−−→ s

Read from write buffer

not blocked s p s.B p = b1 ++ [(a, v)] ++ b2 no pending b1 a

s
Evt p (Access R (Location mem a) v)
−−−−−−−−−−−−−−−−−−−−−−→ s

Read from register

s.R p r = SOME v

s
Evt p (Access R (Location reg p r) v)
−−−−−−−−−−−−−−−−−−−−−−→ s

Write to write buffer

s
Evt p (Access W (Location mem a) v)
−−−−−−−−−−−−−−−−−−−−−−→ s with { B = s.B ⊕ (p, [(a, v)] ++ (s.B p)) }

Write from write buffer to memory

not blocked s p s.B p = b ++ [(a, v)]

s
Tau
−−→ s with { M = s.M ⊕ (a, SOME v); B = s.B ⊕ (p, b) }

Write to register

s
Evt p (Access W (Location reg p r) v)
−−−−−−−−−−−−−−−−−−−−−−−→ s with { R = s.R ⊕ (p, (s.R p) ⊕ (r, SOME v)) }

Barrier

s.B p = []

s
Evt p (Barrier Mfence)
−−−−−−−−−−−−−→ s

Lock

s.L = NONE s.B p = []

s
lock p
−−−−→ s with { L = SOME p }

Unlock

s.L = SOME p s.B p = []

s
unlock p
−−−−−→ s with { L = NONE }

Fig. 1. The x86-TSO machine behaviour [OSS09]

the state of the current instruction ci, the values of the processor-local registers
l, and the pending writes in the write buffer w.

S = {
g : data address →fin value;
f : proc →fin LL;
lck : proc option

}

LL = {
code : code point →fin instruction;
ma : code point;
ci : instruction;
l : reg name →fin value;
w : (data address × value) list

}

The proc view function gives a processor’s view of memory, taking into account
pending writes in the write buffer:

proc view pid s = list.FOLDR (λ (a, v). λ g. g ⊕ (a, v)) s.g (s.f pid).w

The semantics is then expressed as a (small-step) state transition relation
TransP pid (s, s′). This uses several auxiliary relations. The first, PreTransP,
gives the basic semantics of commands.

PreTransP pid s =
case (s.f pid).ci of
nop → failwith “PreTransP : nop

′′

|| movri(r, n) → update f pid (λ ll. ll with { l = ll.l ⊕ (r, n); ci = nop }) s
|| movrm(r, a) → update f pid (λ ll. ll with { ci = movri(r, proc view pid s a) }) s

. . .

Note that most instructions (including locked instructions) are eventually rewrit-
ten to nop. The evaluation of a nop instruction involves getting the next instruc-
tion at address ma+ 1 and releasing the lock if it is taken.

XnopTrans pid (s, s′) =
let ll = s.f pid in

case ll.ci of
nop → (

let ma′ = ll.ma + 1 in

if ma′ 6∈ DOM ll.code then ⊥ else

let s1 = update f pid (λ ll. ll with { ma = ma′; ci = (ll.code ma′) }) s in

let s2 = unset lock s1 in

s′ = s2)
|| → ⊥

The lock and jump transitions are handled similarly. TransP is then

TransP pid (s, s′) =
pid ∈ DOM s.f ∧ not blocked pid s ∧ let ll = s.f pid in

case ll.ci of
nop → (XnopTrans pid (s, s′))
|| lock c → (XlockTrans pid (s, s′))
|| jump(c, n) → (XjumpTrans pid (s, s′))
|| → (s′ = PreTransP pid s)

The write buffer for processor pid simply takes the first pending write of value
v to address a and updates the global memory g.

TransWb pid (s, s′) =
let ll = s.f pid in

let (a, v) = HD ll.w in

let s1 = s with { g = s.g ⊕ (a, v) } in

let s2 = update f pid (λ ll. ll with { w = TL ll.w }) s1 in

pid ∈ DOM s.f ∧ ll.w 6= [] ∧ (s′ = s2)

The transitions of the system are simply the union of the individual processor
and write buffer transitions, TransS =

⋃
pid{TransP pid ∪ TransWb pid}.

For example, a simple instruction such as movri(r, n) executes in two steps,
the first PreTransP transition updates the local state, and changes the current
instruction to nop. The second XnopTrans transition gets the next instruction
from memory, then updates the current instruction and current address. In the
concurrent setting, these steps are interleaved with steps of write buffers and
other processors. More complicated instructions take more than two steps to
execute, and each step may involve accessing an address in memory or a local
register. This lack of atomicity impacts considerably on the proof system.

5 Rely-Guarantee proof system

In this section we give our main contribution, a Rely-Guarantee proof system
for x86 assembly code with the x86-TSO memory model. In Sect. 2 we gave the
syntax and semantics of our judgement, and discussed the movri rule. In Fig. 2
we give selected rules covering further x86 instructions and logical aspects such
as weakening.
Judgement well-formedness and soundness The non-logical rules use
a judgement well-formedness condition wf, and typically also include a
nop conditions side condition. The main aim of these conditions is to reduce
the complexity of rules, which results from the liberal notion of state and the
non-atomic nature of individual instructions, by making assumptions about
P, Q, R, G. We motivate these conditions by discussing in more detail the
soundness proof for rule movri from Sect. 2. The execution of movri(r, n) is inter-
leaved with R-steps as follows:

s0
R

∗

−−→ s1
PreTransP
−−−−−−→ s2

R
∗

−−→ s3
XnopTrans
−−−−−−→ s4

R
∗

−−→ s5
We are given that s0 ∈ P , and we need to show s5 ∈ Q. Our well-formedness
assumption gives that P and Q are closed under R (this is a standard assump-
tion), so it suffices to assume s1 ∈ P , and show s4 ∈ Q. Formally, wf is defined
as follows:
wf j = case j of pid (R, G) J ma ⊢ P c Q →
wf R pid R ∧ wf G pid G ∧ (closed P R) ∧ (closed Q R)

The judgements wf R, wf G are technical conditions that assert eg that the
rely for a processor preserves for values of that processor’s local registers.
The nop conditions in the premises of the rule require Q to be closed under
XnopTrans pid transitions:

nop conditions pid P Q G =
closed Q (XnopTrans pid)
∧ { (s, s′) | (s, s′) ∈ XnopTrans pid ∧ s′ ∈ Q } ⊆ G

so it suffices to show s2 ∈ Q (using again the fact that Q is
closed under R). In practice, assertions for processor pid do not men-
tion pid’s program counter, and the side condition is trivial. Let f =
update f pid (λ ll. ll with { l = ll.l ⊕ (r, n); ci = nop }). From the definition
of PreTransP, we have that s2 = f s1 ie s2 ∈ IMAGE f P . So the rule is sound
only if IMAGE f P ⊆ Q, one of the premises of the rule. A similar argument can
be used to prove that the Guarantee commitment is satisfied only if f |P ⊆ G.
Composition Our judgement concerns a single processor pid executing in some
environment R which has so far been largely unconstrained. For x86-TSO, R
should include the transitions of other processors and all write buffers. The
move from the global view of the system with many processors and write
buffers, to the local view of a single processor in environment R is handled
by the Comp rule. Ĵ is a function that for each pid gives a J = Ĵ pid. Well-
formedness of Ĵ means that each J should provide a pre and post condition
for each code point (not just jump targets). Similarly R̂, Ĝ give rise to R and
G. The first Rely-Guarantee requirement is that R̂ pid, the rely for pid, should

pid, (R,G), J, ma |= {P ′} c {Q′} P ⊆ P ′ Q′ ⊆ Q

pid, (R,G), J, ma |= {P} c {Q}
Weaken

pid, (R′, G′), J, ma |= {P} c {Q} R ⊆ R′ G′ ⊆ G

pid, (R,G), J, ma |= {P} c {Q}
WeakenRG

pid, (R,G), J ′, ma |= {P} c {Q} J ′ ⊆ J

pid, (R,G), J, ma |= {P} c {Q}
WeakenJ

pid, (R,G), J, ma |= {P} c {Q} pid, (R,G), J, ma |= {P ′} c {Q′}

pid, (R,G), J, ma |= {P ∧ P ′} c {Q ∧ Q′}
Conj

wf (pid, (R,G), J, ma ⊢ {P} nop {P}) nop conditions pid P P G

pid, (R,G), J, ma |= {P} nop {P}
nop

wf (pid, (R,G), J, ma ⊢ {P} movrr(r1, r2) {Q}) s ∈ P
v = (s.f pid).l r2 f = update f pid (λ ll. ll with { ci = movri(r1, v) })

(s, f s) ∈ G pid, (R,G), J, ma |= {f s} movri(r1, v) {Q}

pid, (R,G), J, ma |= {P} movrr(r1, r2) {Q}
movrr

wf (pid, (R,G), J, ma ⊢ {P} movrm(r, a) {Q}) s ∈ P
v = proc view pid s a f = update f pid (λ ll. ll with { ci = movri(r, v) })

(s, f s) ∈ G pid, (R,G), J, ma |= {f s} movri(r, v) {Q}

pid, (R,G), J, ma |= {P} movrm(r, a) {Q}
movrm

wf (pid, (R,G), J, ma ⊢ {P} moviload(r1, r2) {Q}) s ∈ P
a = (s.f pid).l r2 f = update f pid (λ ll. ll with { ci = movrm(r1, a) })

(s, f s) ∈ G pid, (R,G), J, ma |= {f s} movrm(r1, a) {Q}

pid, (R,G), J, ma |= {P} moviload(r1, r2) {Q}
moviload

wf (pid, (R,G), J, ma ⊢ {P} jump(cnd, ma′) {Q})
nop conditions pid P Q G

closed (J.invs ma′) R IMAGE XjumpTranspid (P ∩ cnd) ⊆ J.invs ma′

IMAGE XjumpTranspid (P ∩ ¬cnd) ⊆ Q XjumpTranspid|P ⊆ G

pid, (R,G), J, ma |= {P} jump(cnd, ma′) {Q}
jump

wf (pid, (R,G), J, ma ⊢ {P} lock(c) {Q})
pid, ({}, G), J, ma |= {P} c {Q} XlockTranspid|P⊆ G

pid, (R,G), J, ma |= {P} lock(c) {Q}
lock

wf Ĵ ∧ ∃ R̂ ∃ Ĝ

(∀ pid.
⋃

pid′ 6= pid
(Ĝ pid′) ⊆ (R̂ pid))

∧ (∀ pid.
⋃

pid′
(TransWb pid′) ⊆ (R̂ pid))

∧ (∀ ma. let J = Ĵ pid in

let (R, G) = (R̂ pid, Ĝ pid) in
pid, (R,G), J, ma |= {J.invs ma} J.code ma {J.invs (ma+ 1)})

|=Ĵ Ĵ
Comp

Fig. 2. Selected proof rules

contain the guarantees of the other processors pid′. The second requirement is
that the rely also contain all write buffer transitions. The final conjunct re-
quires that for every instruction c = J.code ma, there is a valid judgement
pid, (R,G), J, ma |= {J.invs ma} c {J.invs (ma + 1)}. The meaning of the
conclusion |=

Ĵ
Ĵ is that, providing the system starts in a state s where the in-

struction executed by pid and identified by ma is such that s ∈ (Ĵ pid).invs ma,
then all further invariants given by (Ĵ pid).invs ma′ hold whenever execution
of pid reaches ma′. Thus |=

Ĵ
Ĵ represents the conjunction of invariants, each of

which are indexed by pid and ma. The invariants themselves can be arbitrary
formulas in higher-order logic, over the whole system state (including program
counters).
The logic in practice The Comp rule requires that the Rely relations include at
least the transitions of the write buffers. A consequence is that the proof rules
for instructions require assertions to be closed under write buffer transitions.
For example, suppose we write a value v to an address a. We might incorrectly
annotate the write as {w = []}a := v{w = [(a, v)]}, where w informally refers to
the write buffer of the process. However, the assertion {w = [(a, v)]} is not closed,
because at any point after the instruction executes, the write buffer could flush
the write and become empty. A correct assertion, that is closed under write buffer
interference, is {w = [(a, v)] ∨ w = []}. Rather than expanding various possible
states as disjuncts, a more succinct approach is to allow assertions to be explicitly
closed with respect to write buffer interference. If P is an assertion { . . .}, we

write the closure under R as { . . .}
R
. For example, if R represents interference

from the write buffer, then {w = [(a, v)]}
R

= {w = [(a, v)] ∨ w = []}. In
practice, rather than deal with the whole write buffer, we often want to refer
to pending writes to a particular address. We introduce the syntax {a

.
= xs}

to mean that the contents of the write buffer, filtered to address a (and then
projected onto the written values), is xs. For example, if a 6=b, then a write buffer
[(b, 0); (a, 1); (b, 2); (a, 3)] satisfies the assertion {a

.
= [1, 3]}.

A key point is that our assertions are higher-order logic predicates over the
entire system state S, and can therefore be almost arbitrarily complicated. More-
over, the fact that our system is embedded in higher-order logic means that we
can readily introduce new syntax for common assertions that arise in practice.

6 Simpson’s four slot algorithm

In this section we show how to apply the proof system to verify Simpson’s
four slot algorithm. We looked at several other examples (Peterson’s mutual
exclusion algorithm and the Linux spin-lock implementation), but Simpson’s
algorithm is considerably more interesting, and exercises several novel features
of our proof system, such as processor assertions that refer to the private state
of other processors (essential for the direct proof we give here). Our approach
mirrors informal algorithm development for weak memory models: First, we
consider the SC case for high-level pseudo-code. Then we incorporate the x86-
TSO memory model, and modify the algorithm by including memory barriers. A

State

data[0..1, 0..1]
slot[0..1] // read-only by the reader, slot[] ∈ {0, 1}
latest = 0 // read-only by the reader, latest ∈ {0, 1}
reading = 0 // read-only by the writer, reading ∈ {0, 1}
pairW , indexW // writer local state, pairW ∈ {0, 1}, indexW ∈ {0, 1}
pairR, indexR // reader local state, pairR ∈ {0, 1}, indexR ∈ {0, 1}

Writer code

pairW = ¬reading

indexW = ¬slot[pairW]

. . . //critical section, write to data[pairW , indexW]

slot[pairW] = indexW

latest = pairW

Reader code

pairR = latest

reading = pairR

indexR = slot[pairR]

. . . //critical section, read from data[pairR, indexR]

Fig. 3. Simpson’s four slot algorithm in pseudo-code

key point is that the proof of correctness in the SC case dictates the positioning of
the memory barriers in the weak case. Finally we refine the pseudo-code to low-
level assembly code. Another key point is that we retain the high-level assertions
in the low-level code, however the reasoning is substantially more complicated
due to the non-atomic execution of individual instructions.
Simpson’s four slot algorithm is designed to ensure mutual exclusion between
a single reader and a single writer of a multi-word datum. Simpson’s algorithm
also satisfies several other desirable properties, but here we focus solely on mu-
tual exclusion. Simpson’s algorithm is non-blocking: the reader can still read
even when the writer is delayed in the critical section, and vice-versa. This is
achieved essentially by maintaining four copies of the underlying data in an ar-
ray data[0..1, 0..1] and ensuring that the reader and writer access different slots
when running concurrently.

The code in Fig. 3 describes the entry and exit protocol run by the reader
and the writer before and after the data array is accessed (the exit protocol for
the reader is trivial). This entry and exit code is invoked whenever the writer
wants to write to data, or the reader wants to read from data. Thus, the code
above could be executed many times. Between executions, arbitrary other code
may be executed, but crucially it should not access data.

Simpson’s algorithm is correct in the sense that, if the reader and writer are
both in their critical sections, then they access different entries in the data array.
More formally, we introduce the notation pcR ∈ ⊡ (pcR ∈ ·�) to mean that the
reader is (is not) in the critical section. We then have the following:

Writer code

pairW = ¬reading

{pcR ∈ ⊡ −→ (pairW = reading) −→ (indexR = slot[reading]) }

indexW = ¬slot[pairW]

{pcR ∈ ⊡ −→ (pairW = reading) −→ (indexR = slot[reading]), indexW = ¬slot[pairW]}

. . . //critical section, write to data[pairW , indexW]

slot[pairW] = indexW

latest = pairW

Reader code

pairR = latest

reading = pairR

{pcR ∈ ·�, pairR = reading }

indexR = slot[pairR]

{pcR ∈ ⊡, pairR = reading }

. . . //critical section, read from data[pairR, indexR]

Fig. 4. Annotated pseudo-code for SC

{pcW ∈ ⊡ −→ pcR ∈ ⊡ −→ (pairW , indexW) 6= (pairR, indexR)}
= //by propositional reasoning

{pcW ∈ ⊡ −→ pcR ∈ ⊡ −→ (pairW = pairR) −→ (indexR 6= indexW)}
= //since pcR ∈ ⊡ −→ (pairR = reading)

{pcW ∈ ⊡ −→ pcR ∈ ⊡ −→ (pairW = reading) −→ (indexR 6= indexW)}
= //since pcW ∈ ⊡ −→ (indexW = ¬slot[pairW])

{pcW ∈ ⊡ −→ pcR ∈ ⊡ −→ (pairW = reading) −→ (indexR = slot[reading])}
ie the algorithm is correct provided the main correctness assertion

pcR ∈ ⊡ −→ (pairW = reading) −→ (indexR = slot[reading]) holds in the writer’s
critical section. Of course, we must also ensure that the auxiliary facts we used
in the equality proof above are valid, but this is easy to see from the code. Note
that this writer assertion refers to the program counter and private register state
of the reader. The annotated code is in Fig. 4.

The writer assertions in Fig. 4 are trivially true for the writer if there
is no reader. In the concurrent setting, following Rely-Guarantee [Jon81], we
must check that these assertions are true regardless of steps taken by the
reader: we check that the properties are closed under interference from the
reader. First we express the interference from the reader as a relation be-
tween states. The notation S S′ represents the relation S × S′. Con-
sider the Fig. 4 annotated code for the reader. Since these statements con-
cern reader thread-local state pcR and pairR, or global state reading that is
read-only by the writer, these assertions are closed under writer interference.
Examining this annotated code reveals the interference from the reader con-
sists of: Updates to reading outside the critical section: (pcR ∈ ·�, reading = i)
 (pcR ∈ ·�, reading = j), i ∈ {0, 1}, j ∈ {0, 1}; Entrance to the critical region:

(pcR ∈ ·�, pairR = reading) (pcR ∈ ⊡, pairR = reading, indexR = slot[pairR]);
Exit from the critical region: (pcR ∈ ⊡) (pcR ∈ ·�). The only non-trivial
interference involves the reader entering the critical section, but it is immedi-
ate that this preserves the main correctness assertion. A key point is that the
reader interference is dependent on which region of code the reader is execut-
ing (pcR ∈ ·�, pcR ∈ ⊡). This is the main motivation for our liberal notion
of state, which can be incorporated into traditional proof systems unrelated to
weak memory. In general, we expect more complicated algorithms will involve
many more “regions”. The key idea here is to index the rely and guarantee
relations by the region in which the code is executing.
Simpson’s algorithm for x86-TSO A common approach to adapting algo-
rithms to weak memory models is to insert memory synchronization operations
eg memory barriers. One option is to insert barriers between every instruction,
which is sufficient to regain SC behaviour for x86-TSO. However, synchronization
operations are typically very expensive, so for performance reasons it is impor-
tant to minimize their use. In this section we show how the SC proof dictates
where to place memory barriers in the weak case.

We first examine the interference from the reader, specifically interference
when entering the critical section. The first reader assertion in Fig. 4 states that
the value of the reader’s thread-local register pairR is equal to the main memory
value at address reading. Unfortunately, since writes to memory may be buffered,
this assertion no longer holds. The fix is to insert a memory barrier after the
write to reading.

Now consider the first writer assertion in Fig. 4. Whilst the assertion is
closed under interference from the reader, the writer’s own write buffer may
asynchronously flush a write to memory which invalidates the assertion. For
example, there may be a write to slot[pairW] from a previous execution of the
writer’s exit protocol which is still in the write buffer. The problem is that the
assertion is not closed under write buffer transitions, as required by the proof
system. The simplest fix is to ensure that there are no pending writes in the write
buffer to addresses which are involved in the assertion. The assertion mentions
two addresses, reading and slot[pairW]. The write buffer will never contain writes
to reading since it is read-only by the writer. Thus, an invariant for the writer is
the assertion {reading

.
= []}. To rule out the possibility of a write to slot from a

previous execution of the writer exit protocol, we can insert a memory barrier
at the end of the writer code, see Fig. 5. The alternative, placing the barrier
immediately after the write to slot[pairW] means that the write to latest may be
delayed, potentially reducing performance, though not correctness.
Simpson’s algorithm in x86 assembly code with x86-TSO We now refine
the high-level pseudo-code of the preceding section to low-level x86 assembly
code. This makes the whole development more realistic, but the length of the
code increases dramatically, and although high-level assertions are preserved at
the low-level, there are now many intermediate assertions which obscure the
main correctness argument.

Writer code

{reading
.
= [], slot[]

.
= [] }

pairW = ¬reading

{reading
.
= [], slot[]

.
= [], pcR ∈ ⊡ −→ (pairW = reading) −→ (indexR = slot[reading])}

indexW = ¬slot[pairW]

{reading
.
= [], slot[]

.
= [], pcR ∈ ⊡ −→ (pairW = reading) −→ (indexR = slot[reading])}

. . . //critical section, write to data[pairW , indexW]

slot[pairW] = indexW

latest = pairW

barrier mfence

{reading
.
= [], slot[]

.
= [] }

Fig. 5. Annotated pseudo-code for x86-TSO

The writer pseudo-code starts with pairW = ¬reading, which translates to
the three x86 assembly instructions in Fig. 6. The initial and final assertions
are exactly those of the pseudo-code version, and the expected intermediate
assertions do indeed hold, but for far from obvious reasons. Interested readers
may consult the formal development for further details. To clarify the exposition,
we suppress the trivial assertions reading

.
= [], slot[]

.
= [] in these intermediate

assertions. The remaining pseudo-code instructions are tackled in a similar way.

7 Related work

We have included references to the main sources in the body of the text. The x86-
TSO memory model [OSS09] was introduced in two provably-equivalent styles,
axiomatic and operational, but here it suffices to consider only the operational
model (called the “abstract machine memory model” in [OSS09]). In order to
make our development self-contained, we have reproduced this memory model,
and in addition incorporated a model of x86 instructions. It would be reasonably
straightforward to establish a formal connection between our model and x86-
TSO. Our x86 instruction model is based on that of Myreen [MSG08] which has
been extensively validated in the sequential case; we believe the model is accurate
for the concurrent case considered here. Whilst the model is not intended to be
exhaustive, it should be straightforward to extend it. One of the challenges of
this work was dealing with non-atomic x86 assembly instructions. Similar issues
are the subject of ongoing research [Col08].

Our proof for Simpson’s algorithm in the SC case is new, as far as we are
aware. Many other proofs for SC exist in the literature eg [Hen03,Rus02]. As
discussed in previous sections, our proof is unsuited to traditional program logics
because of the need to refer to the private state of other processors. There are
several other approaches to ensuring correctness of programs running on weak
memory models. Data-race free (DRF) programs can be reasoned about using

Writer code

{reading
.
= [], slot[]

.
= [] }

movrm(eax, reading)

{pcR ∈ ⊡ −→ (1 − eax = reading) −→ (indexR = slot (reading)) }

movri(pairW, 1)

{pcR ∈ ⊡ −→ (1 − eax = reading) −→ (indexR = slot (reading)), pairW = 1 }

subrr(pairW, eax)

{reading
.
= [], slot[]

.
= [], pcR ∈ ⊡ −→ (pairW = reading) −→ (indexR = slot[reading])}

Fig. 6. Annotated x86 assembly code for x86-TSO

SC techniques. A strengthening of DRF techniques to x86-TSO is [Owe10]. An
interesting approach that shares some similarities with DRF techniques is [CS09].
Model checking is another technique that has been fruitfully applied in this
area [PD95], and one can always resort to direct operational proofs [Rid07].

8 Conclusion

We presented a proof system for concurrent low-level assembly code and the x86-
TSO memory model. Some features of the proof system, such as the liberal notion
of state, are independent of the memory model and may find use elsewhere. Some
features are specific to x86-TSO, such as the need to use assertions closed under
write buffer interference (and the practical importance of having a syntactic
“closure under write buffer interference” operation) and how to incorporate a
smooth treatment of write buffers as degenerate processes.

Mechanization revealed several unexpected areas for future work. For ex-
ample, intermediate assertions at the assembly code level involved substantially
more complicated proofs than at higher-levels, although intuitively the proof
effort should be similar. One possible explanation is that our proof system can
distinguish intermediate states in the execution of a single instruction, however
in practice assertions do not make such distinctions. Therefore one may expect
that the proof system can be simplified by making further assumptions about
the nature of assertions. Clearly there is a trade-off here between the complexity
of the judgement semantics and the complexity of the proof rules: in this paper
we have chosen to keep the judgement semantics as simple as possible, but other
choices are certainly possible. Our argument for the correctness of the high-level
pseudo-code running against x86-TSO should be made formal, by taking an ap-
propriate model of a high-level language (eg Xavier Leroy’s Clight [BL09]) and
exposing the low-level memory model. This would involve tracking the memory
model through the different stages of the compilation process. A much easier
alternative would be to design an operational semantics of a high-level language
that incorporates x86-TSO from scratch, and carry out the proofs of correctness
against this model.

We believe that our proof system makes the presentation of proofs much
more palatable. However, the reasoning is still very low-level and operational,
and creating a proof takes significant effort. Having talked with low-level pro-
grammers, it appears that most think very operationally about these programs,
and that few high-level abstractions or concepts have emerged. One can incor-
porate other orthogonal abstractions such as separation logic but it is not clear
that this would make these programs essentially easier to reason about. This
work has uncovered several key requirements, but a key challenge remains: to
establish higher-level notions for reasoning about programs executing with re-
laxed memory models. The author acknowledges funding from EPSRC grants
EP/F036345 and EP/F019394.

References

[BL09] Sandrine Blazy and Xavier Leroy. Mechanized semantics for the Clight subset
of the C language. CoRR, abs/0901.3619, 2009.

[CH72] M. Clint and C. A. R. Hoare. Program proving: Jumps and functions. Acta
Informatica, 1:214–224, 1972.

[Col08] Joey W. Coleman. Expression decomposition in a Rely/Guarantee context.
In Natarajan Shankar and Jim Woodcock, editors, VSTTE, volume 5295 of
Lecture Notes in Computer Science, pages 146–160, 2008.

[CS09] Ernie Cohen and Norbert Schirmer. A better reduction theorem for store
buffers. Technical report, 2009.

[Flo67] R. W. Floyd. Assigning meanings to programs. In Proc. American Mathe-
matical Society Symposia in Applied Mathematics 19, 1967.

[Hen03] Neil Henderson. Proving the correctness of Simpson’s 4-slot ACM using an
assertional Rely-Guarantee proof method. In Keijiro Araki, Stefania Gnesi,
and Dino Mandrioli, editors, FME, volume 2805 of Lecture Notes in Computer
Science, pages 244–263. Springer, 2003.

[Hoa69] Hoare. An axiomatic basis for computer programming. CACM: Communica-
tions of the ACM, 12, 1969.

[Jon81] C. B. Jones. Development Methods for Computer Programmes Including a
Notion of Interference. PhD thesis, Prgr.Res.Grp. 25, Oxford Univ., Comp.
Lab., UK, June 1981.

[Lin99] 1999. Linux Kernel mailing list, thread “spin unlock optimiza-
tion(i386)”, 119 messages, Nov. 20–Dec. 7th, http://www.gossamer-
threads.com/lists/engine?post=105365;list=linux. Accessed 2009/11/18.

[MSG08] Magnus O. Myreen, Konrad Slind, and Michael J. C. Gordon. Machine-code
verification for multiple architectures: An application of decompilation into
logic. In Proc. FMCAD, 2008.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model:
x86-TSO. In Proc. TPHOLs, LNCS 5674, pages 391–407, 2009.

[Owe10] Scott Owens. Reasoning about the implementation of concurrency abstrac-
tions on x86-TSO. In ECOOP, 2010.

[PD95] Park and Dill. An executable specification, analyzer and verifier for RMO
(relaxed memory order). In SPAA: Annual ACM Symposium on Parallel
Algorithms and Architectures, 1995.

[Rid07] Tom Ridge. Operational reasoning for concurrent Caml programs and weak
memory models. In Proc. TPHOLs, LNCS 4732, pages 278–293, 2007.

[Rus02] John Rushby. Model checking Simpson’s four-slot fully asynchronous com-
munication mechanism, 2002.

[Sim90] H. R. Simpson. Four-slot fully asynchronous communication mechanism. IEE
Proceedings, Computers and Digital Techniques, 137(1):17–30, January 1990.

