
Operational reasoning for concurrent Caml

programs and weak memory models

Tom Ridge

University of Cambridge

Abstract. This paper concerns the formal semantics of programming
languages, and the specification and verification of software. We are in-
terested in the verification of real programs, written in real programming
languages, running on machines with real memory models. To this end,
we verify a Caml implementation of a concurrent algorithm, Peterson’s
mutual exclusion algorithm, down to the operational semantics. The im-
plementation makes use of Caml features such as higher order parame-
ters, state, concurrency and nested general recursion. Our Caml model
includes a datatype of expressions, and a small step reduction relation
for programs (a Caml expression together with a store). We also develop
a new proof of correctness for a modified version of Peterson’s algorithm,
designed to run on a machine with a weak memory.

1 Introduction

Program verification has a long and venerable history, from the pioneering work
of Turing [MJ84], through to recent work such as the mechanized verification of
the Four Colour Theorem [Gon05]. However, there are problems with existing
approaches.

– The languages and programs are typically highly idealized, and far removed
from the real languages people actually use. Attempts to address real lan-
guages are typically not foundational.

– With the advent of multicore processors, assumptions about how to model
memory are no longer justified, and existing proofs are typically invalid in
the case that the algorithm is running on a machine with a weak memory.

We explore the issues involved by conducting two verifications: for the first,
we verify a non-trivial concurrent Caml program, Peterson’s algorithm for mu-
tual exclusion [Pet81], down to the operational semantics; for the second we
verify Peterson’s algorithm with a weak memory model.

The Caml code we verify appears in Fig. 1 and can be compiled and run
with recent versions of OCaml1 (for readers not familiar with Caml syntax, we
describe a standard pseudocode version in Sect. 2). We formalize a semantics
for Caml in Sect. 3 and the proof in Sect. 4. The complexity that arises in the

1 http://caml.inria.fr

let turn = ref false in

let trys =

let try_f = ref false in

let try_t = ref false in

fun x -> if x then try_t else try_f in

let rec loop = fun id ->

(trys id := true) (* set trying flag *)

; (turn := not id) (* set turn flag *)

; (let rec test = fun _ ->

if !turn = id || not !(trys (not id)) then () else test ()

in test ()) (* looping in test *)

; () (* critical region *)

; (trys id := false) (* exit crit *)

; loop id

in

(Thread.create loop false, Thread.create loop true)

Fig. 1. Peterson’s algorithm, Caml code

proofs stems from the size of individual states (Caml expressions that occupy
several pages), the large number of reachable states for each thread , and the
consequent intricacy of the interleavings of the two threads. Reasoning directly
about the operational semantics requires clever proof techniques to mitigate
these complexities. We briefly outline these techniques, which we describe in
greater detail in Sect. 4.

– We factor the proof into an abstract part and an operational part. We iso-
late the core interleavings of the threads by constructing an abstract model
of Peterson’s algorithm. The Caml implementation is a refinement of this
abstract model.

– The Caml part of the proof is an invariant proof. We use the theorem prover
to symbolically execute along paths of the system, proving the invariant
along the way.

– We employ a strong induction hypothesis, which makes use of a notion of
“recurrent states”. We consider paths starting from these recurrent states,
and whenever we encounter another recurrent state, we apply the induc-
tion hypothesis, and so terminate symbolic execution along that particular
branch. The induction scheme, with the notion of recurrent states, is useful
even for non-concurrent, infinite state systems.

– To reduce the complexity of the state space of the parallel composition of the
two threads, T1|T2, we replace a thread, T2 say, with an invariant I2, which
represents possible interference of T2, but is much easier to work with. We
also consider I1|T2. This is similar to rely-guarantee reasoning [Jon81], and
allows us to perform a thread-modular verification. The rely-guarantee style
reasoning extends smoothly to multiple threads.

– In order for the induction to work smoothly we eliminate the interleaving
between T1 and I2, so that T1 is always making progress. We construct a

thread-like object T ′

1, that executes roughly as T1, but incorporates possible
interference from I2 into each T1 step. It is the system T ′

1 that we symbolically
execute.

These techniques allow us to reduce the Caml proof to little more than sim-
plification, which we use to symbolically execute the thread-like objects, and to
check the invariant at each stage. In fact, the proof could be entirely automated.
Moreover, the techniques apply directly to similar algorithms such as Simpson’s
4-slot for which we already have abstract proofs [Rid]. We claim that our ap-
proach is reproducible and can be applied to many other algorithms: given an
abstract proof of an algorithm, proving the connection to a Caml (or other) im-
plementation can often be reduced to little more than symbolic execution using
the theorem prover’s simplifier.

To address the second problem, we demonstrate reasoning about Peterson’s
algorithm at an abstract level with a very weak memory model. This requires us
to formalize a model of weak memory (Sect. 6), modify Peterson’s algorithm, and
to develop a new proof of correctness (Sect. 7). In essence, the proof of Peterson’s
algorithm with a weak memory model follows the outline of the original abstract
proof, but includes proof patches to cope with the additional complexities. We
include background information on weak memory models in Sect. 5.

Mechanization of these proofs is vital, especially as we move towards veri-
fication of realistic full scale languages: the reachable states of the operational
semantics are simply too complex for informal proof. Moreover, reasoning about
concurrent algorithms even without weak memory models is considered difficult.
With the additional complexity of weak memory models, we found mechaniza-
tion to be invaluable. For example, the process of constructing the proof revealed
several possible execution paths that we were not aware of, and which required
us to alter our proofs.

Our contributions are:

– We develop a mechanized verification of a Caml implementation of Peterson’s
algorithm, down to the operational semantics.

– The Caml implementation is a refinement of an abstract model of Peterson’s
algorithm. This is important because there are many abstract verifications
which we would like to reuse for more complex program models.

– We develop some novel proof techniques which we have sketched above, and
which we describe more fully in Sect. 4.

– We develop a mechanized proof of correctness for a version of Peterson’s
algorithm, with a weak memory model.

Small-step operational semantics are the most successful means of language
specification available. In principle, it is clear that operational reasoning is suf-
ficient to prove the correctness of programs. If the language and programs are
specified by means of operational semantics, the most direct form of proof is by
using operational reasoning. The motivation of this work is to promote opera-
tional reasoning as a means of program verification.

trys[0] = 0

trys[1] = 0

turn = 0

P0: trys[0] = 1 P1: trys[1] = 1

turn = 1 turn = 0

while(trys[1] && turn == 1); while(trys[0] && turn == 0);

// do nothing // do nothing

// critical section // critical section

... ...

// end of critical section // end of critical section

trys[0] = 0 trys[1] = 0

Fig. 2. Peterson’s algorithm, informal pseudocode

Basic definitions Given an underlying set of states S, a state transition
system or sts on S is a pair consisting of a set of start states ⊆ S, and a transition
relation ⊆ S × S. Given an sts L, a sequence p is a function from N to S, such
that adjacent points p n, p (n + 1) are related by the transition relation of L. A
path is a sequence that starts in a start state. A state a is reachable if there is a
path p, and position n, such that p n = a. If L and K are defined on the same
set of underlying states S, the parallel composition of L and K is the sts formed
by taking the union of the start states, and the union of the transition relations.
An abstraction relation R from an sts L to an sts K relates each start state of
L to some start state of K, and if a is reachable by L, and related to b, and
L makes a transition from a to a′, then K can make a transition from b to b′,
and moreover a′ and b′ are also related by R. The key fact about an abstraction
relation is that for every path of L, there is a path of K such that corresponding
positions in the paths are related. Abstraction relations are a form of simulation
relations.

Isabelle/HOL The mechanizations described here were conducted in the
Isabelle/HOL theorem prover. List cons is represented in Isabelle syntax by
an infix #, and updating a function f at argument a with value v is written
f(a := v). Isabelle also has two implications, −→ and =⇒. For the purposes
of this paper, they may be considered equivalent. Apart from that, Isabelle’s
syntax is close to informal mathematics.

2 Background on Peterson’s algorithm

In this section, we describe Peterson’s algorithm informally using pseudocode,
give a formal model of the abstract algorithm in HOL, give the key lemmas
needed to prove the mutual exclusion property, and state the mutual exclusion
property itself.

In Fig. 1 we give the Caml version of Peterson’s algorithm that we verify.
By way of introduction, we here present an informal pseudocode version, Fig.
2, and explain how it works. The algorithm uses two variables, trys (an array

peterson-trans i s s ′ ≡

(∗ j is the other process ∗)
let j = ¬ i in

(∗ extract parts of the state ∗)
let ((turn,trys),pcs) = s in
let ((turn ′,trys ′),pcs ′) = s ′ in
let (itry ,ipc) = (trys i , pcs i) in
let (itry ′,ipc ′) = (trys ′ i , pcs ′ i) in
let (jtry , jpc) = (trys j , pcs j) in
let (jtry ′, jpc ′) = (trys ′ j , pcs ′ j) in

(∗ nothing happens to j ∗)
(jpc ′ = jpc ∧ jtry ′ = jtry)

(∗ process i takes a step ∗)
∧ (

(∗ looping in any state ∗)
((ipc ′,itry ′,turn ′) = (ipc,itry ,turn))

∨ ((ipc,ipc ′) = (NonCrit ,SetTry)
∧ (itry ′,turn ′) = (itry ,turn))

∨ ((ipc,ipc ′) = (SetTry ,SetTurn)
∧ (itry ′,turn ′) = (True,turn))

∨ ((ipc,ipc ′) = (SetTurn,Test)
∧ (itry ′,turn ′) = (itry ,j))

∨ ((ipc,ipc ′) = (Test ,Crit)
∧ ((jtry = False) ∨ (turn = i))
∧ (itry ′,turn ′) = (itry ,turn))

∨ ((ipc,ipc ′) = (Crit ,Exit)
∧ (itry ′,turn ′) = (itry ,turn))

∨ ((ipc,ipc ′) = (Exit ,NonCrit)
∧ (itry ′,turn ′) = (False,turn)))

Fig. 3. Thread transitions for Peterson’s algorithm, in HOL

of booleans) and turn. A trys[0] value of 1 indicates that thread P0 wants
to enter the critical section, similarly trys[1] = 1 indicates that P1 wants to
enter the critical section. The variable turn holds the id of the thread whose
turn it is. Entrance to the critical section is granted for P0 if P1 does not want
to enter its critical section or if P1 has given priority to P0 by setting turn to 0.
The algorithm guarantees that the two threads are never executing their critical
sections simultaneously.

It is straightforward to formalize an abstract state transition system for Pe-
terson’s algorithm. For each thread, the program counter, or pc, is either non-
critical, about to set the try variable, about to set the turn variable, testing
the turn variable and the other thread’s try variable, in the critical section, or
exiting the critical section by unsetting the try variable.

datatype pc = NonCrit | SetTry | SetTurn | Test | Crit | Exit

We identify thread id with a boolean rather than an integer.The turn and
try variables are booleans (try is indexed by thread id). The system state is a
tuple consisting of the turn and try variables, and the program counters for each
thread. The transition relation for a thread is parameterised on the thread id.

types thread-id = bool types turn = thread-id types trys = (thread-id ⇒ bool)
types pcs = (thread-id ⇒ pc) types peterson-state = (turn ∗ trys) ∗ pcs

constdefs peterson-trans :: thread-id ⇒ peterson-state ⇒ peterson-state ⇒ bool

We define the transitions in Fig. 3. Each thread starts in its non-critical state,
with all variables initialised to false. The state transition system is a parallel
composition of the two threads.

constdefs peterson-starts :: peterson-state set
peterson-starts ≡ {((False,λ x . False),λ x . NonCrit)}

constdefs peterson-sts :: peterson-state sts
peterson-sts ≡
par (peterson-starts, peterson-trans False) (peterson-starts, peterson-trans True)

We first characterise the thread states where the try variable is set, following
Lemma 10.5.1 in [Lyn96]. The key lemma, lemma-10-5-2, is proved by induction
on n. Mutual exclusion follows directly, since turn cannot be both i and j.

lemma lemma-10-5-2 :
∀ i p. is-path peterson-sts p
−→ (∀ n.

let ((turn,trys),pcs) = p n in
let (itry ,ipc) = (trys i , pcs i) in
let j = ¬i in
let (jtry ,jpc) = (trys j , pcs j) in
ipc = Crit ∧ jpc ∈ {Test ,Crit}
−→ (turn = i))

lemma mutual-exclusion:
∀ p. is-path peterson-sts p
−→ (∀ n i .
let ((turn,trys),pcs) = p n in
let (itry ,ipc) = (trys i , pcs i) in
let j = ¬i in
let (jtry ,jpc) = (trys j , pcs j) in
¬ (ipc = Crit ∧ jpc = Crit))

3 Caml formalization

In this section we give the datatype of Caml expressions, describe the small-step
operational semantics for Caml, and give the state transition system for the
Caml implementation of Peterson’s algorithm.

If we examine the code in Fig. 1, we see that we need to model several features
of Caml: general recursion, nested recursion, state, higher order parameters, and
concurrency. We do not model features, such as modules, that are not required
for our example. Adding additional features would not essentially alter the proof,
however, which rests largely on symbolic evaluation of the code.

We declare a datatype of Caml expressions in Isabelle/HOL. This includes the
usual functional core (including let), constants (including fix), state (assignment,
reference, dereference, and locations) and concurrency (Par). A trace expression
is not part of the standard Caml syntax. It is semantically neutral (i.e. Trace(a,e)
behaves as e), and it removes the need to quote Caml expressions explicitly.

datatype ′a exp =

Var var
| Lam ′a lambda
| App ′a exp ∗ ′a exp
| LetVal ′a exp ∗ ′a lambda

| Const const

| Assign ′a exp ∗ ′a exp
| Deref ′a exp
| Ref ′a exp
| Loc loc

| Par ′a exp ∗ ′a exp

| Trace ′a ∗ ′a exp

and ′a lambda = Lambda var ∗ ′a exp

We use the -dparsetree OCaml compiler switch to obtain an abstract syntax
tree of the Caml code, which we import into Isabelle/HOL, modulo some pretty
printing of the thread pair as a Par. We first modify the Caml code by tagging
subexpressions with trace information, in particular, we modify the () expression
in the critical section to Trace("Crit",()).

constdefs peterson :: string exp
peterson ≡
LetVal(Trace(′′turn ′′,Ref (Const FFalse)),Lambda(′′turn ′′,LetVal(Trace(′′trys ′′,. . .

We need to model how Caml expressions evaluate or reduce. Expressions
reduce in the context of a store. Our store is a pair (n,w) where n is the next
free location in the store w, a map from locations to expressions. Our reduction
relation is then a relation between (n,w, e), the current store and expression,
with (n′, w′, e′), the store and expression at the next step. To make symbolic
evaluation easier, we phrase this as a function reduce′ from (n,w, e) to a list of
possible next states, which we later lift to a relation rreduce. We give an excerpt
from this definition, illustrating that variables and lambdas do not reduce, and
the reduction of a function value (lambda expression) e1 applied to a value e2 is
by substituting e2 in the body of the function.

primrec

reduce ′ n w (Var v) = []
reduce ′ n w (Lam l) = []
reduce ′ n w (App e1e2) = reduce ′-3 n w e1e2
reduce ′-3 n w (e1 ,e2) = (

if is-value e1 then (
if is-value e2 then (

if is-Lam e1 then [(n,w ,subst-lambda e2 (dest-Lam e1))]
else . . .)))

We combine the Caml definition of Peterson’s algorithm with the Caml re-
duction relation to get a state transition system for the Caml implementation
of Peterson’s algorithm.

types caml = loc ∗ (loc ⇒ string exp) ∗ string exp

constdefs peterson-starts :: caml set
peterson-starts ≡ {(loc-counter , λ x . null-exp, peterson)}

constdefs peterson-sts :: caml sts
peterson-sts ≡ (peterson-starts, rreduce)

4 Proof of correctness

In this section, we outline the proof of correctness. The difficulty of the proof
arises from the complexity of the state space. For example, in the abstract model,
we can show a property is invariant by case splitting on a thread’s program
counter.For the Caml thread, which is represented as a Caml expression, case
splitting does not make sense, and we have to find some other way to characterise
the possible states the thread might take.

Given that we have added trace information to identify the critical section,
our statement of correctness informally says that it is not the case that the Caml
expression is a Par of two threads executing in their critical section. A thread
is represented as a Caml sequence of the current expression, and the remaining
expressions to execute. A sequence is just a let of the current expression, and
the rest of the sequence as the body of the let. This gives rise to the following
statement of correctness.

lemma mutual-exclusion:
∀ p n. is-path peterson-sts p −→ ¬ (∃ e1 l1 e2 l2 . let (n,w ,e) = p n in
e = Par (LetVal (Trace (′′Crit ′′,e1),l1), LetVal (Trace (′′Crit ′′,e2),l2)))

The proof proceeds by constructing an abstraction relation from the Caml
sts to the abstract sts.

lemma is-abstraction: is-abstraction PetersonML.sts Peterson2 .peterson-sts R

The abstraction relates Caml states matching Trace(′′Crit′′, e) to abstract
states with program counter Crit. If the Caml threads were both in their critical
section, then by the main property of abstraction relations, so too would the two
abstract threads. Since we have shown that this is impossible, we get mutual ex-
clusion for the Caml implementation. To show that R is indeed an abstraction
relation, we have to show that, for reachable states of the Caml system, transi-
tions can be matched by transitions of the abstract system. That is, we have to
show an invariant of all reachable states.

The main barrier to this approach is the complexity of the reachable states of
the Caml implementation. Intermediate program expressions can grow substan-
tially larger than the original program (because let rec duplicates a body of code,
and we have nested use of let rec, and we also have two thread subexpressions
which duplicate the outer loop code). Individual instructions, which execute in a

single step in the abstract model, can take many steps to execute in the concrete
model, especially as many features are defined on top of the relatively small
core. For example, the Caml code corresponding to the Test instructions can
take more than 40 steps to execute. This in turn influences the interleavings
that can occur. These factors combine to cause a blowup in the complexity of
the state space.

Although intermediate states are extremely large, the state space is still finite.
This means it is at least theoretically possible to enumerate all the reachable
states and prove mutual exclusion this way. This would not tell us anything about
proving general programs correct with an operational semantics. We therefore
resolve to develop general techniques that do not take any advantage of the
finiteness of the state space.

Let the two Caml thread transition systems be Ti, Tj , where {i, j} = {true, false}.
By definition of reachable, we must prove ∀p ∀n (is-path (par Ti Tj) p→ I (p n))
where I states that if Ti takes a step, then so too can the abstract model of Ti,
all respecting the abstraction relation (we also prove the equivalent for Tj). We
attempt to prove this by cases on n. If n = 0, then we prove I(p 0), else if n = 1
we prove I(p 1) . . . , at each stage using the knowledge of the previous state to
determine the next state (using the definition of Caml reduction). Where reduc-
tion may result in several alternatives, for example when reading the value of
an undetermined variable (we symbolically execute parametric expressions), we
have a branch in the proof. In this way, the machine keeps track of the possible
Caml expression at each stage. This allows us to avoid spelling out which states
are reachable.

Eventually, the path will loop back to a state already seen. Rather than paths,
we consider sequences p which may start in one of these recurrent states. Instead
of proving ∀p ∀n (. . .→ I(p n)) we prove the equivalent ∀n ∀p (. . .→ I(p n)), by
complete induction on n (then cases on n, as above). The induction statement
contains quantification over a higher-order object, the function p, which makes
it a relatively strong use of induction. Suppose n > 30, and (p 30) is a recurrent
state (not necessarily occurring elsewhere on p). Then consider n′ = n− 30, and
p′ = drop 30 p, i.e. p′ is the subsequence of p starting at position 30. We can
invoke the induction hypothesis on n′ (since n′ < n) with p′ as the path (which
starts in a recurrent state) to show I(p′ n′), i.e. I(p n) and we have finished
the proof. This technique does not require the state space to be finite, or for
computations to terminate, indeed our threads never terminate. To preempt
possible mis-readings, we emphasize that the recurrent states are not necessarily
states that have been seen previously on the path.

We wish to avoid considering the interleavings of each thread, so we use a form
of rely-guarantee style reasoning [Jon81]. Our system is a parallel composition
of two threads Ti, Tj . Write this as Ti|Tj . The lemma we want to prove is that
if Ti takes a step, so too can the abstract model. Then we replace the state of
Tj with some arbitrary (but reachable for Ti|Tj) state of Tj , and replace the
transitions of Tj with Ij where Ij represents the invariant guaranteed by (an
arbitrary number of steps of) Tj . In our case, Ij simply states that the trys j

and turn variables in the Caml state are either Const TTrue or Const FFalse,
and the trys i variable is preserved. A key point is that the reachability of Ti|Ij

is at least that of Ti|Tj . This technique extends smoothly to cope with more
than two threads.

At every step we have to consider that Ij may make a transition, in which
case we invoke the induction hypothesis, since the state of Tj is unchanged. This
leads to lengthy proofs. We can reduce the proof size by half in the following way.
Instead of considering transitions of Ti|Ij , we consider transitions of T ′

i , where
(T ′

i x x′) ↔ ∃y (Ti x y ∧ Ij y x′). In effect, our transitions include steps of Ti

together with interference from Ij . The key point, again, is that the reachability
of T ′

i is at least that of Ti|Ij , and therefore at least that of Ti|Tj . Note that we
have now modularised the proof, since we are considering an sts T ′

i which is very
close to the sts for our original single thread Ti. Again, this technique extends
smoothly to cope with more than two threads.

We have reduced the problem to examining paths of a single “thread” sts T ′

i

that looks similar to Ti. The proofs consist of little more than simplification to
execute the reduction steps, and to check abstract transitions match concrete
transitions, and some manual instantiation of the induction hypothesis when
reaching a recurrent state. So the parts of the proof which are specific to Pe-
terson’s algorithm are reduced to simplification, whilst the techniques described
above can be captured in general lemmas, and reused in other settings. This
concludes our discussion of the Caml verification.

5 Background on weak memory models

Programmers usually understand concurrent programs based on a notion of “se-
quential consistency” [Kaw00], i.e. there is some sequential execution of the
program which validates the observed behaviour. For example, suppose two con-
current threads Tr, Tw execute as follows. All variables are initialized to 0. Tw
writes 1 to location x, then 2 to location y. Tr reads 2 from location y, then 0
from location x.

Tw : x← 1; y ← 2;
Tr : y → 2; x→ 0;

With a sequentially consistent memory, such an execution would be impos-
sible. y → 2 must occur after y ← 2, and so after x ← 1, in which case x → 0
should be x → 1. Although this type of reasoning is usually valid on single
processor machines, it is costly to provide such behaviour in multiprocessor ma-
chines, so most multicore systems provide weaker guarantees about the order in
which reads and writes are seen. In a weak memory model, where no guarantee
is provided about the order of reads and writes to different memory locations,
the execution above might be perfectly feasible. However, most algorithms are
verified with a sequentially consistent model of memory. In the presence of weak
memory models, existing algorithms must be modified (or new algorithms in-
vented), along with new proofs of correctness. Practical experience bears out

these claims. For example, Holzmann [HB06] describes how a standard imple-
mentation of Peterson’s algorithm was observed to fail when executing on the
Intel Pentium D processor.

Weak memory models are difficult to program against. Indeed, it is known
[Kaw00] that problems such as mutual exclusion are impossible to solve, even
with relatively strong memory models, without explicit synchronization primi-
tives, such as a “memory barrier” instruction. A memory barrier ensures that all
writes on all processors are flushed to main memory. Although these operations
can provide the guarantees programmers need, they are typically very expensive
to execute, so that there is a desire to reduce their use as much as possible.

In general there is a three-way trade off, between the strength of the syn-
chronization primitive, the extent to which the primitive is used in an algorithm,
and the strength of the memory model. In this work, we fix our synchroniza-
tion primitive as a per location memory barrier. We must now choose between a
strong algorithm (many memory barriers) coupled to a weak memory model, or
a weak algorithm with a strong memory model. We choose a strong algorithm,
i.e. we emphasize portability between memory models over efficiency of the al-
gorithm. We modify Peterson’s algorithm slightly to work with a weak memory.
With reference to the original pseudocode, Fig. 2, we include memory barriers
after the first write of each thread to their try variables, and after writes to the
turn variable.

6 Weak memory model formalization

Compared to the previous abstract formalization, the model is more complex.
Reads and writes no longer refer directly to memory. Memory locations must be
reified in the model, so that we can talk about a write to a particular memory
location. We model the history of writes by maintaining a list, pending-writes,
which is updated every time a thread writes to memory.

types thread-id = bool datatype loc = Turn | Try thread-id

datatype pc = NonCrit | SetTry | Barrier loc | SetTurn | Test | Crit | Exit

types val = bool types memory = loc ⇒ val
types pending-writes = (thread-id ∗ loc ∗ val) list
types pcs = thread-id ⇒ pc types peterson-state = memory ∗ pending-writes ∗ pcs

pending-writes is a purely logical construct that reflects the history of the
trace into the current state, allowing easier invariant proofs. It is not intended
that a real implementation maintain a cache of pending writes. The memory, a
map from locations to values, is also a logical construct. The interpretation of
the memory at location loc will turn out to be the following: if there have been
no writes by any thread to loc since the last memory barrier, then two threads
reading from loc agree on the value, which is (memory loc). Our proofs are valid
for any memory model where the memory barrier satisfies this property.

∨ ((ipc,ipc ′) = (Barrier Turn,Test)
∧ barrier Turn (memory ,pws) (memory ′,pws ′))

∨ ((ipc,ipc ′) = (Test ,Crit)
∧ (read memory pws (i ,Try j ,False) ∨ read memory pws (i ,Turn,i))
∧ (memory ′,pws ′) = (memory ,pws))

Fig. 4. Peterson’s algorithm, modified for weak memory, excerpt

On executing a memory barrier for a location loc, if there is some pending
write for loc, then the memory is updated by taking the last write that some
thread made to loc. The thread that is chosen need not be the thread executing
the memory barrier instruction. All pending writes for loc are then dropped
from the list of pending writes. If there are no pending writes, memory remains
unaltered.

constdefs barrier :: loc ⇒ memory ∗ pending-writes ⇒ memory ∗ pending-writes ⇒
bool

In accordance with our logical interpretation of pending writes, the write
operation simply appends the write to the list of pending writes. Since we aim
to keep our memory model as weak as possible, we declare but do not define the
read operation. We will later constrain read with properties that are required
for the correctness proof. The transitions are phrased in a similar style to before,
and we give an excerpt only, Fig. 4.

constdefs write :: (thread-id ∗ loc ∗ val) ⇒ pending-writes ⇒ pending-writes
write tidlocv pws ≡ tidlocv#pws

consts read :: memory ⇒ pending-writes ⇒ (thread-id ∗ loc ∗ val) ⇒ bool

7 Proof of correctness

The weak memory proof follows the outline of the previous abstract proof. The
read operation depends on the memory and the pending writes. Our first task is
to characterise the pending writes to each location, given the state of a thread.
For example, in the following lemma, invariant P shows that if thread i is in the
non-critical state, then the pending writes to i’s try variable are either empty, or
contain a single write by i, setting the try variable to false. The lemma is named
because it logically precedes Lemma 10.5.1; it does not appear in [Lyn96].

lemma lemma-10-5-0 :
defines P-def : P ≡ λ i memory pws pcs ipc.

let pws-Try-i = filter (λ (tid ,loc,v). loc = Try i) pws in
if ipc ∈ {NonCrit ,SetTry} then pws-Try-i ∈ {[],[(i ,Try i ,False)]}

else if ipc = Barrier (Try i) then pws-Try-i ∈ {[(i ,Try i ,True)], [(i ,Try i ,True),(i ,Try
i ,False)]}

else pws-Try-i = []
defines R-def : R ≡ λ i memory pws pcs ipc.

let pws-i-Turn = filter (λ (tid ,loc,v). tid = i ∧ loc = Turn) pws in
if ipc = Barrier Turn then pws-i-Turn ∈ {[(i ,Turn,¬i)],[]}
else pws-i-Turn = []
shows ∀ p. is-path peterson-sts p
−→ (∀ n i .
let (memory ,pws,pcs) = p n in
let ipc = pcs i in
P i memory pws pcs ipc
∧ R i memory pws pcs ipc)

One might imagine that placing a memory barrier after every write to a
location is sufficient to ensure correctness. This is not correct for our model of
memory, because it is still possible to read from a location with a pending write,
in which case the read is unconstrained. Another subtlety is the interaction of
the memory barriers. For example, thread i may have written to variable turn,
and be on the point of doing a memory barrier to force the write to memory.
In the meantime, the other thread j may also write to turn, and complete the
subsequent memory barrier. In this case, i will execute the memory barrier but
i’s pending write will have been discarded by j’s memory barrier. This case can
be seen in the characterisation of the pending writes, since if i’s pc is Barrier
Turn, the pending writes to the turn variable may be the empty list. In this
scenario, i’s write may never reach memory at all.

With lemma-10-5-0, we can prove the equivalent of lemma-10-5-1, i.e. that
if thread i’s program counter lies in the range SetTurn to Exit, and thread
j reads i’s try variable to be v, then v must be true. The proof requires a
restriction on the behaviour of the read operation: if there have been no writes
to a location since the last memory barrier for that location, and two threads
read that location, then they read the same value. It is easiest to express this
as the existence of a function memory from locations to values, which gives the
common value that threads must read in case there are no pending writes. We
use a locale to capture this assumption, and the proof is conducted within this
locale, in the scope of the assumption.

locale l = assumes a:
∀ memory pws tid loc v . filter (λ (tid ,loc ′,v). loc ′ = loc) pws = []
−→ (read memory pws (tid ,loc,v) = (memory loc = v))

We can now prove the equivalent of lemma-10-5-2, property Q in the following
lemma statement. We require an auxiliary fact to handle the case that a thread’s
write to the turn variable has been discarded by the memory barrier of the other
thread. For example, it is conceivable that j writes to turn, i writes to turn, i

performs a memory barrier, and subsequently enters the critical section. j then
performs a memory barrier (but there are no pending writes), reads i’s write

to turn which gives priority to j, and so enters the critical section. However, if
i enters the critical section, then i’s memory barrier must have committed j’s
pending write to the turn variable. In which case, j is prevented from entering the
critical section. Some work is required to phrase this reasoning as the invariant
P . As before, our final correctness theorem follows directly from Q, since memory
Turn cannot be both i and j simultaneously.

lemma (in l) lemma-10-5-2 :
defines P-def :
P ≡ λ i ipc jpc memory pws.
ipc = Crit
∧ jpc = Barrier Turn
∧ filter (λ(tid ,loc,c). loc = Turn) pws = []
−→ memory Turn = i
defines Q-def :
Q ≡ λ i ipc jpc memory pws.
ipc = Crit
∧ jpc ∈ {Test ,Crit}
−→ memory Turn = i

shows

∀ p. is-path peterson-sts p
−→ (∀ n i .
let (memory ,pws,pcs) = p n in
let ipc = pcs i in
let j = ¬ i in
let jpc = pcs j in
P i ipc jpc memory pws
∧ Q i ipc jpc memory pws)

8 Related work

A substantial amount of program verification has used Hoare logics [Hoa69]. A
state of the art example of mechanized Hoare reasoning for while-programs with
state is [MN05]. The language treated is significantly simpler than that here. The
work of Homeier [HM95] also treats a very simple language. This work includes
a verification condition generator, essentially a tool that constructs a syntax-
directed proof for the program (augmented with user hints and invariants), and
returns the steps that could not be proven automatically as “verification condi-
tions”.

Our work uses operational reasoning directly above an operational semantics.
Operational reasoning is much more flexible then Hoare logic, since any tech-
nique allowed by the meta-logic (in our case higher-order logic) is directly usable.
On the other hand, we know of no essential advantages of Hoare logic over oper-
ational reasoning. Strother Moore has also followed this course. The detail of the
operational models mandate mechanical support, but current theorem provers
are more than up to the task. Indeed, Strother Moore states2 “had there been
decent theorem provers in the 1960s, Floyd and Hoare would never have had
to invent Floyd-Hoare semantics!” His work [LM04] focuses on operational Java
program verification. However, he first compiles the Java to bytecode, and then
verifies this. Correctness properties are phrased as properties of the bytecode,
and reasoning occurs above the bytecode, not above the original Java program.
The examples treated, such as an “add one” program, and a Java function that
implements factorial, are significantly simpler than the work presented here.

2 http://www.cs.utexas.edu/users/moore/best-ideas/vcg/index.html.

Concurrency, and the problem of the state space explosion in interleaving be-
tween threads, is also not tackled. A very rare example of operational reasoning
applied to a high-level language is the work of Compton [Com05] who verifies
a version of Stenning’s protocol for a restricted model of Caml and UDP. This
work is similar, but again much simpler, than that presented here.

Of course, where concurrency is involved, all these examples assume a sequen-
tially consistent memory model. There has been much work on weak memory
models. The PhD of Kawash [Kaw00] provides good references into the litera-
ture. Mechanization usually takes the form of model checking. Examples include
[MLP04], where the authors tackle the problem by analysing dependencies be-
tween reads and writes; and [BAM06], where the authors use a constraint based
approach based on the SAT encoding method in [GYS04]. As far as interactive
mechanization goes, Mike Gordon has some early unpublished work3 on memory
models of the Alpha processor.

For weak memory models, model checking offers a tractable approach to many
of the main problems. However, model checking is not always an option. The
thrust of our work is to see if traditional reasoning techniques, employed when
designing algorithms such as Peterson’s, can scale to the weak memory case.
Our experience leads us to believe that they can, but that the effort is great,
and mechanical assistance seemingly mandatory. Put simply, it is very hard
for humans to design concurrent algorithms if they are restricted to reasoning
about the interleaving of thread transitions. Weak memory models add even
more complexity. However, new ways of thinking (and proving facts) about weak
memory may alleviate the problem.

9 Conclusion

We presented the verification of a Caml implementation of Peterson’s algorithm,
down to the operational semantics. The proofs were non-trivial, and we spent
considerable effort phrasing the lemmas and shaping the induction statements,
as described in Sect. 4. However, once the overall structure of the proof was in
place, the actual body of the proof was mostly symbolic execution. The lemmas,
induction schemes, and proof techniques are general, and have the potential to
scale to real programs in real languages, so that future verifications will benefit
from the experience described here. We also addressed the problem of weak
memory models by verifying a version of Peterson’s algorithm running on a
weak memory model.

Our model of Caml included all the features necessary to support the example
of Peterson’s algorithm. However, we are interested in verifying other programs
which use more Caml features. To this end, we are working with several others
on a highly realistic model of Caml, using the Ott tool [SNO+] to state our
definitions. We intend to develop metatheory for this model, and operational
proofs of program correctness for other Caml programs. The next program we

3 See http://www.cl.cam.ac.uk/research/hvg/FTP/FTP.html.

intend to verify is a Caml implementation of a fully automatic theorem prover
for first order logic [RM05].

References

[BAM06] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Bounded model
checking of concurrent data types on relaxed memory models: A case study.
In Thomas Ball and Robert B. Jones, editors, CAV, volume 4144 of Lecture
Notes in Computer Science, pages 489–502. Springer, 2006.

[Com05] Michael Compton. Stenning’s protocol implemented in UDP and verified in
Isabelle. In Mike D. Atkinson and Frank K. H. A. Dehne, editors, CATS,
volume 41 of CRPIT, pages 21–30. Australian Computer Society, 2005.

[Gon05] Georges Gonthier. A computer-checked proof of the Four Colour Theorem,
2005. http://research.microsoft.com/∼gonthier/4colproof.pdf.

[GYS04] Ganesh Gopalakrishnan, Yue Yang, and Hemanthkumar Sivaraj. QB or not
QB: An efficient execution verification tool for memory orderings. In Ra-
jeev Alur and Doron Peled, editors, CAV, volume 3114 of Lecture Notes in
Computer Science, pages 401–413. Springer, 2004.

[HB06] G.J. Holzmann and Dragan Bosnacki. The design of a multi-core extension
of the Spin Model Checker. In Formal Methods in Computer Aided Design
(FMCAD), November 2006.

[HM95] Peter V. Homeier and David F. Martin. A mechanically verified verification
condition generator. Comput. J, 38(2):131–141, 1995.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12, 1969.

[Jon81] C. B. Jones. Development methods for computer programs including a notion
of interference. Technical Report PRG-25, Programming Research Group,
Oxford University Computing Laboratory, 1981.

[Kaw00] Jalal Y. Kawash. Limitations and capabilities of weak memory consistency
systems. PhD thesis, Computer Science, University of Calgary, 2000.

[LM04] H. Liu and J. S. Moore. Java program verification via a JVM deep embedding
in ACL2. Lecture Notes in Computer Science, 3223:184–200, 2004.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[MJ84] F. L. Morris and C. B. Jones. An early program proof by Alan Turing. Annals

of the History of Computing, 6(2):193–143, 1984.
[MLP04] Samuel P. Midkiff, Jaejin Lee, and David A. Padua. A compiler for multiple

memory models. Concurrency and Computation: Practice and Experience,
16(2-3):197–220, 2004.

[MN05] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order
logic. Information and Computation, 199:200–227, 2005.

[Pet81] Gary L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3):115-116, June 1981.

[Rid] Tom Ridge. Simpson’s four slot algorithm in Isabelle/HOL. Available online
at http://www.cl.cam.ac.uk/∼tjr22.

[RM05] Tom Ridge and James Margetson. A mechanically verified, sound and com-
plete theorem prover for FOL. In Proceedings of TPHOLs 2005, 2005.

[SNO+] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas
Ridge, Susmit Sarkar, and Rok Strnǐsa. Ott: Effective tool support for the
working semanticist. Accepted to ICFP 2007: The 12th ACM SIGPLAN
International Conference on Functional Programming.

