
A B-tree library for OCaml
Tom Ridge University of Leicester

This proposal describes a presentation to be given at
the OCaml 2017 workshop. The presentation will cover
B-trees as a data-structure (including motivating why
variants of B-trees are often the data-structure of choice
for filesystems and databases), and the particular vari-
ant that is provided by the tjr_btree library available
from GitHub1. This library uses code generated from
an Isabelle/HOL theory, which is also available from
GitHub2.

1 Introduction

In 1979, Comer authored a paper titled “The Ubiq-
uitous B-tree” (Comer, 1979). Almost 40 years later,
B-trees are still a topic of interest and research: 10
years ago Rodeh authored a paper “B-trees, shadowing
and clones” (Rodeh, 2007) which inspired the creation
of BtrFS, a new filesystem for Linux. BtrFS is currently
under active development, and looks likely to become
the default Linux filesystem in the near future.
This presentation will cover the basics of B-trees, the

particular design that we have chosen, the core defini-
tions in Isabelle/HOL (whose syntax will be familiar
to OCaml users) and the OCaml library itself. We will
conclude with an example application: a continuously
snapshotting, network-replicated block device. This li-
brary is part of the “ImpFS” project which aims to build
a formally-verified, modern filesystem with BtrFS-like
features.

2 B-trees

The B-tree data-structure is particularly suited for im-
plementing key-value maps on block-based storage,
such as that provided by hard drives and SSDs. In-
memory B-trees can also perform well, even outper-
forming data-structures such as Red-Black trees, due

1github.com/tomjridge/tjr_btree
2github.com/tomjridge/isa_btree

to their favourable interaction with page-based caches.
Keys and values must be “small” compared to the block
size so that multiple key-value pairs can fit into each
block, but lifting this restriction is trivial for values (the
value becomes a pointer to data in other blocks). For
large keys, one can often use relatively small repre-
sentations of the key rather than the key itself. For
example, for keys which are arbitrarily long strings,
one can use the relatively small hash of the string as
the key, rather than the string itself.
B-trees come in many variations, and the nomencla-

ture is not standardized. We develop a variant which
is closest to Rodeh’s B-trees.
A B-tree is a balanced tree where leaf nodes store lists

of key-value pairs, and each internal node stores a (vari-
able) number of keys k0 . . . kn−1 in increasing order
(and no values), and has children c0 . . . cn. The value
of n varies for each node, but there are typically global
minimum and maximum bounds minn ≤ n ≤ maxn

for the entire tree. The key-value pairs in the leaves cor-
respond to the entries in the map3. Given a search key
k, the primary purpose of the internal keys is to guide
search to the leaf that possibly contains k. If map(t)
denotes the map corresponding to the B-tree t, and
kvs(t) denotes this key-value map considered as a set of
(k, v) pairs, then the B-tree guarantees this important
property: Given an internal node t = (k0 . . . , c0 . . .)
and a pair (k, v) ∈ kvs(t), then ki ≤ k < ki+1 iff (k, v)
occurs in ci+1.
This property holds for any node in the tree. Given

a particular key k, one can locate the pair (k, v) by
starting from the root node, and repeatedly descending
to a child of the node (chosen as above), eventually
reaching a leaf4.
In practice, nodes in a B-tree are recorded in blocks

on disk. Typical block sizes are 1024 bytes, and 4096
bytes. Children of a node are represented by pointers

3The list of key-value pairs contains a key k at most once.
4We omit technical complications that arise for left-most and

right-most branches, where lower and upper bounds ki, ki+1 may
not exist.



A B-tree library for OCaml

(typically 32 or 64 bit ints). Assuming keys are 8 bytes
and child pointers are 8 bytes, a 4096-byte block can
store around 256 keys together with the associated
child pointers. Thus, B-trees have large fan-out. It is
possible to store over 16 million key-value pairs in a
B-tree with a root, one layer of internal nodes, and one
layer of leaves. If all blocks are on disk, 3 block reads
suffice to locate a particular key-value. Thus, B-trees
require relatively few disk reads, and moreover have
very low memory overhead, since only one block need
be held in memory at any point when searching for a
key. Usually the root and first few layers of internal
nodes are cached in memory. In our example, caching
the root block and the single layer of internal nodes
involves 257 blocks, or approximately 1MB of memory.
Then any key-value pair can be retrieved with at most
one block lookup, and with a memory overhead of
about 1MB.
B-trees also excel when data is updated. For exam-

ple, deleting a key-value pair in a B-tree can be as
simple as updating the block corresponding to the rel-
evant leaf. For copy-on-write B-trees, a new version of
the tree can share almost all blocks with the previous
version, so that features such as “persistent on-disk
snapshots” execute almost instantaneously.

3 Mechanization in Isabelle

Although B-trees are well-known and have been around
for a long time, most presentations are relatively in-
formal. The standard algorithms text by Cormen et
al. (Cormen et al., 2009) is a typical example. It in-
cludes imperative code for the standard map opera-
tions find(k) (reasonably simple) and insert(k, v) (sig-
nificantly more complicated, involving splitting and re-
balancing), but code for delete(k) (which is harder still,
involving coalescing and rebalancing) is not presented.
The paper by Sexton and Thielecke (Sexton and Thi-
elecke, 2008) attempts to formalize the (considerable)
details, however, this work was not machine-checked,
and contains various errors as an almost inevitable
consequence. They also do not treat concurrency.
Our definitions are formalized in Isabelle/HOL. Our

formalization is in small-step state-passing style, with
each disk access modelled as a separate step, which
supports reasoning about the interleaving when multi-
ple processes access the disk concurrently. In addition
to the definitions of the B-tree operations, we also for-
malize the correctness conditions, taking care to ensure
that they are executable as code.
Isabelle code extraction is used to produce OCaml

definitions which are then lightly patched to remove
various unfortunate artefacts (e.g., the dictionary-
passing implementation of equality, which is not
needed for the B-tree operations, and can be replaced
with OCaml’s built-in equality for the correctness con-
ditions).

4 OCaml library

The OCaml library builds on the Isabelle definitions to
provide OCaml-friendly interfaces. For example, we
expose the B-tree functionality via standard map oper-
ations, whereas the Isabelle definitions use an explicit
state-passing style. The OCaml library is heavily pa-
rameterized5. For example, the B-tree map operations
are parameterized by key type ′k, values ′v, block point-
ers ′r and the global state ′t. Further parameterization
covers the block device, block size, and on-disk persis-
tence/marshalling strategy. The library also includes
some examples, such as an on-disk key-value map from
strings to strings.

The main features of the library are:

• provides a copy-on-write, persistent (on-disk) B-
tree, enabling fast snapshot of the whole map state,
and instant copy-on-write access to any snapshot;

• provides a generic LRU cache which can be used at
various levels (above the disk and above the store,
and above the map in order to batch high-level
map operations);

• the code is purely functional, with mutable state
(and errors) modelled via a state-passing monad;

• the library has preliminary support for “write omis-
sion”, when it can be determined that cached
writes would not be reachable from an on-disk
synced state (this helps ameliorate the cost of
copy-on-write B-tree operations);

• support for an insert_many operation, to insert
multiple key-value pairs at once;

• support for a bindings6 operation, to return a
stream of all the entries in the map; importantly,
regardless of the number of entries, this requires
only constant memory overhead, since (chunks
of) entries are loaded as needed from disk (if they
are not already cached);

• extensive parameterization, including: types
(as above); minimum and maximum sizes for
nodes and leaves; on-disk layout; and pick-
ling/marshalling functions;

• “B-tree kit” functionality is supported: many maps
can use the same disk, or a single map can be
spread over multiple disks; caches can be shared
or not, and layers can be cached or not, and so
on.

The library has been extensively tested, including
exhaustive state-space exploration for small parame-
ter values, however, the formal Isabelle proof remains
future work.

5We have used type variables, and records of functions, rather
than functor parameterization.

6Called ls_kvs in the library.

Page 2 of 3



A B-tree library for OCaml

5 Example application: virtual
block-device

As well as standard applications, such as a key-value
store, we have developed a continuously snapshotting,
network-replicated, virtual block-device. We use the
B-tree to map keys that are block ids (natural numbers)
to values which are blocks. With this we can use the
B-tree to expose a “virtual” block device via the loop-
back device, ultimately backed by a “normal” file. We
then use the virtual block device to host a traditional
filesystem such as ext4. Ext4 updates to blocks result
in new versions of the B-tree data stored in the backing
file. Each version of the B-tree can be accessed inde-
pendently, providing a continuously snapshotted block
device. The backing file, which stores all data for all
versions of the block device, is append-only and so can
be synced trivially over the network. This approach
can be made reasonably fast, and for typical developer
workloads, caching can limit the space overhead (at
the cost of providing less frequent snapshots). All this
can be accomplished with a very small amount of code
(less than 50 lines) above the B-tree library, which
provides evidence that the library is flexible enough
to support many other applications. Indeed, we plan
to use the library as the basis for “ImpFS”, a modern,
verified filesystem.

Bibliography

Comer, Douglas (1979). “The Ubiquitous B-Tree”. In:
ACM Comput. Surv. 11.2, pp. 121–137. doi: 10 .
1145/356770.356776.

Cormen, Thomas H. et al. (2009). Introduction to Al-
gorithms, 3rd Edition. MIT Press. isbn: 978-0-262-
03384-8. url: http://mitpress.mit.edu/books/
introduction-algorithms.

Rodeh, Ohad (2007). “B-trees, Shadowing, and
Clones”. In: 2007 Linux Storage & Filesystem Work-
shop, LSF 2007, San Jose, CA, USA, February 12-13,
2007. Ed. by Ric Wheeler. USENIX Association. url:
https://www.usenix.org/conference/2007-
linux-storage-filesystem-workshop/b-trees-
shadowing-and-clones.

Sexton, Alan P. and Hayo Thielecke (2008). “Reasoning
about B+ Trees with Operational Semantics and
Separation Logic”. In: Electr. Notes Theor. Comput.
Sci. 218, pp. 355–369. doi: 10.1016/j.entcs.
2008.10.021.

Page 3 of 3


