
-- Linus Torvalds on �lesystems

A B-tree library for OCaml

Tom Ridge / OCaml '17 / 2017-09-08

“ But I also think that the "we write meta-data
synchronously, but then the actual data shows up at some
random later time" is just crazy talk. That's simply insane. It
guarantees that there will be huge windows of times where
data simply will be lost if something bad happens.

| B-trees

B-trees are datastructures
 which implement the map abstract datatype

 (�nd, insert, delete etc.)

4 7 10

1 2 3 4 6 7 8 9 10 11 12

13

...

... ...

| Search trees

A B-tree is a form of search tree.

A search tree is st. the keys
in any subtree are bounded
by [...keys in parent...]

Given a key, you can easily locate a (key,value) in a leaf
 by following the appropriate pointers

 and this allows e�cient implementation of map ops such as �nd

| B-trees, in addition to search trees

4 7 10

1 2 3 4 6 7 8 9 10 11 12

13

...

... ...

A B-tree is
 a balanced search tree

 with min and max size constraints on nodes
 (nodes can be partially full)

| Compared to OCaml's standard maps?

 Uses balanced, binary search trees.

✘ B-trees are n-ary trees, and the code is more complicated
 they also have greater space overhead

✔ Tree balancing ops (rotating, splitting etc) can be costly
 B-trees try to minimize this work

 eg insert into non-full nodes without doing any rebalancing

✔ B-trees are also tuned to block devices:
 choose max node size st. every node �ts into a single on-disk block

| B-tree usage
B-trees are widely used in databases

 such as Oracle, SQLServer, PostgreSQL... all of them?
 to provide fast access to large indexed (or key/value) data

B-trees are also used in modern �lesystems
 such as HFS, HFS+, NTFS, jfs2, ext4, reiser4 and btrfs

 to support features like snapshots etc

Quick calculation for an int -> int map:
 assuming: 64 bit (8 byte) ints, blk size 4096 bytes

 have >16M (k,v) bindings, >256 MB of data, in a tree of height 3

If we cache the top two layers (root and children, 1MB)
 at most 1 block read to locate any (k,v) binding

| Implementation in OCaml

Core code developed in Isabelle/HOL to allow formal veri�cation

Interesting aspects:
 novel design

 to allow certain features (see later), and for correctness
 small step, framestack-based operational semantics

 (for concurrency and atomicity modelling)
 state-passing style, monad for state and error

Code then extracted to OCaml and wrapped in an OCaml-friendly API

| OCaml, (int->int) map example usage

(* create and init store, write some values, and close *)
let do_write () = (
 Printf.printf "Executing %d writes...\n" max;
 print_endline "Writing...";
 (* create and initialize *)
 let s = ref (from_file ~fn ~create:true ~init:true) in
 (* get map operations *)
 let map_ops = imperative_map_ops s in
 (* write values *)
 for x=1 to max do
 map_ops.insert (k x) (v x);
 done;
 close !s;
 ())

| Open existing store and delete some entries

(* open store, delete some values, and close *)
let do_delete () = (
 print_endline "Deleting...";
 let s = ref (from_file ~fn ~create:false ~init:false) in
 let map_ops = imperative_map_ops s in
 for x=100 to 200 do
 map_ops.delete (k x);
 done;
 close !s;
 ())

| Check entries have been deleted

let do_full_check () = (
 print_endline "Full check...";
 let s = ref (from_file ~fn ~create:false ~init:false) in
 let map_ops = imperative_map_ops s in
 for x = 1 to max do
 if (100 <= x && x <= 200) then
 assert(map_ops.find (k x) = None)
 else
 assert(map_ops.find (k x) = Some(v x))
 done;
 close !s)

| Quick demo

| Quick demo

 $ src $ time ./ii_example.native
 Executing 10000 writes...
 Writing...
 Deleting...
 Checking...
 Full check...

 real 0m0.941s
 user 0m0.756s
 sys 0m0.168s

Is this good? Nothing really to compare against, and see next slide.

| Quick demo

 $ src $ time ./ii_example.native
 Executing 10000 writes...
 Writing...
 Deleting...
 Checking...
 Full check...

 real 0m0.941s
 user 0m0.756s
 sys 0m0.168s

 # expected size 16B * 10k = 160kB (+tree overhead)? why 79MB?
 $ src $ ls -alh btree.store
 -rw-r----- 1 tr61 tr61 79M Sep 1 19:26 btree.store

| Persistent datastructures
Don't confuse persistent datastructures with persistent storage!

A persistent datastructure (eg OCaml's maps)
 allows access to previous versions when modi�ed

This library provides a B-tree persistent datastructure
 backed by persistent storage (this scheme is similar to "copy-on-write")

Expected store size? 160kB * 10k = 1600 MB = 1.6 GB
 so why only 76MB?

In real use, caching would reduce the number of on-disk states
 an explicit API sync op would force cache �ush and write a state to disk

 and atomicity via on-disk pointer swinging

| Take away point

A fast (maybe), correct (hopefully) CoW B-tree library in OCaml
 suitable for storing and accessing large, indexed data

| The bigger picture: "Future �lesystems"

Project funded by EPSRC and Microsoft Research (PhD student)

"Formal methods applied to �lesystems"
 (speci�cation and implementation)

Main goal: to be able to write correct programs
 that use the �lesystem or other persistent storage eg block dev

Filesystem speci�cation: see the paper on SibylFS, SOSP'15

Filesystem implementation: currently writing ImpFS
 the B-tree library is a key component

| Questions?

| Extra slide: components

block device (eg raw, or backed by a �le, or a network connection etc)
store (above blk dev; keeps track of free blocks)
btree API, including "bindings" and "insert many"
marshalling/on-disk layout, currently courtesy of Jane Street's binprot
LRU caching (eg above blk dev, store, btree etc)

Other interesting points

components are �exible: assemble your own stack with shared
caches, or disjoint caches etc
testing via wf assertion checking and exhaustive state space
exploration

| End

