Visualizing the Evaluation of Functional Programs
for Debugging
John Whitington and Tom Ridge

University of Leicester
{jw642, tr61}@le.ac.uk

—— Abstract

In this position paper, we present a prototype of a visualizer for functional programs. Such
programs, whose evaluation model is the reduction of an expression to a value through repeated
application of rewriting rules, and which tend to make little or no use of mutable state, are
amenable to visualization in the same fashion as simple mathematical expressions, with which
every schoolchild is familiar. We show how such visualizations may be produced for the strict
functional language OCaml, by direct interpretation of the abstract syntax tree and appropriate
pretty-printing. We describe (and begin to address) the challenges of presenting such program
traces in limited space and of identifying their essential elements, so that our methods will one day
be practical for more than toy programs. We consider the problems posed by the parts of modern
functional programming which are not purely functional such as mutable state, input/output and
exceptions. We describe initial work on the use of such visualizations to address the problem of
program debugging, which is our ultimate aim.

1998 ACM Subject Classification D.2.5 Testing and Debugging
Keywords and phrases Debugging, Functional, Visualization, OCaml

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

When we do mathematics on paper, we write an expression or equation and, through a series
of legal transformations, produce a simpler one that, we hope, tells us what we want to
know. It is the same with functional programming, but the semantics define more closely
the order in which the expression is evaluated, choosing each transformation by inspection of
the shape of the expression. Of course, this is not quite how the compiled code runs, but
it is the mental model. So it is natural, when teaching students functional programming,
to proceed by analogy to the mathematical model in which they are already well-practiced.
Since computer languages must be more formal in their choice of evaluation order, we tend to
underline the sub-expression being evaluated at each step. Given the function f for doubling
a number, we might have:

£f3=1+2 %3

= 6=1+2x*3
— 6=1+6
— 6 =71

= false

There are differences from mathematics, of course: the last step may be rather confusing
to the schoolchild (our equals sign does not denote an equation as such, but a comparison
operator). Such visualizations are longwinded to write on paper, for all but the least
© John Whitington and Tom Ridge;

37 licensed under Creative Commons License CC-BY
Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1-8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Visualizing the Evaluation of Functional Programs for Debugging

substantial programs. We should like to generate them by computer. In order to provide
a tool useful to both learners and the everyday programmer, we will begin with a subset
of a real language (rather than building our own toy one), extend it to work for the whole
language, and integrate it properly with the toolchain as a first class citizen. We are writing,
in essence, a step-by-step interpreter.

What is the relevance to debugging? The dream of debugging is this: having observed a
misbehaviour caused by a bug, we assemble all relevant information, both about the program
source and the full trace of the program’s operation, and, describing ourselves concisely
to the computer, we narrow the circumstances down, again and again reducing the search
space, until we have the bug in our grasp, and understand it fully. The fix is then often easy.
But we are very far from this dream, even today. In his introduction to a Special Issue of
Communications of the ACM in 1997 “The Debugging Scandal and What to Do About It”
[5], Lieberman writes: “Today’s commercial programming environments provide debugging
tools that are little better than the tools that came with programming environments thirty
years ago. It is a sad commentary on the state of the art that many programmers name
“inserting print statements” as their debugging technique of choice.” We claim this is still
largely true, twenty years later.

2 Related Work

Two useful surveys [16], [17] give a general overview of recent developments in this area,
the first specific to functional programming, the second with wider scope. A very broad
introduction [8] gives background. A comprehensive survey [11] of education systems for
program visualization is useful too. We pick out a few recent systems for further discussion.

The WinHIPE system [7] is a recent incarnation of these ideas for the HOPE language.
It uses a step-by-step evaluation system, and explicitly addresses the problems of scale by
elision of information and a focusing mechanism. The emphasis, however, is on graphical
(tree-based) representations, an approach we shall not take, being of the belief that trees
can often be, in fact, harder to read than well-pretty-printed program representations. The
Visual Miranda Machine [1] provides a trace of the evaluation of a lazy functional program,
together with a commentary showing the reason for choosing each evaluation step. There is
a discussion of granularity, taking the example of the “list comprehension” language feature.
DrScheme [2] provides, amongst many other facilities, an “algebraic stepper” for the Scheme
language that can print out steps of evaluation. The stepper, however, supports only a subset
of the language. The implementation is interesting, though — it reuses some of the underlying
Scheme implementation to ensure equivalent semantics. Touretsky describes a LISP-based
system [14] that produces mainly textual traces, but with some use of graphical elements
to indicate the different scoping mechanisms peculiar to LISP. The presentation of ZStep95
[15] begins by noting that debugging is, essentially, a human interface problem. The authors
concentrate on the concept of immediacy (temporal, spatial, and so on), which they see as
essential, and exhibit a stepping debugger for a functional language which can go back and
forth through time. There is a system bolted onto Haskell [3] which is not an interpreter as
such, but allows the programmer to insert observation points in the code, within the syntax
of the source language. At such points, the values are printed out. This has the advantage
of explicitly dealing with at least part of the problem of scale — only what we wish to be
printed is printed. Another approach to this problem is as a special case of the more general
concept of a calculator [9], [4], showing how it pertains to various logical systems with a
mathematical basis, not just functional programs. Prospero [12] is a more fully-developed

J. Whitington and T. Ridge

system, again for a lazy language. It includes methods for filtering the evaluation trace to
elide information and a careful discussion of usability issues.

These systems are mostly concerned with program visualization for teaching; we wish to
bias ourselves towards the task of general debugging, hoping that some of the educational
uses will be subsumed by it (the authors of DrScheme [2] urge caution here, choosing instead
to build a “tower” of syntactically restrictive variants of Scheme specifically for educational
purposes. They say that, due to the fact that so many sequences of characters are syntactically
valid in Scheme, error messages are less confusing when the dialect is restricted — we would
prefer to avoid this in the name of universality).

It is worth pointing out that much research in software visualization concerns overtly
graphical approaches. We take a simpler line, sticking to pretty-printing. We claim that
the most important aspect of a successful visualization is elision — reducing the information
visible to just what is required so that large datasets may be understood easily — whether
interactively or not. Programmers are used to seeing their program as text, and visualizing
its evaluation as, for example, a graphical tree structure, is less useful for debugging large
programs (it can be useful, of course, for visualizing program source code structure as opposed
to evaluation traces).

3 Rationale

We surveyed users of the strict functional programming language OCaml informally to ask
whether they routinely used debuggers, and if not, why not. The overwhelming result was
that debuggers are not widely used. The Haskell community has found the same [6]. Several
respondents honed in on a theme: “I use tools that I am familiar with when debugging because
I don’t want to focus on two things (learning a new tool and tracking down/fixing a bug).”
One coined this the “lack-of-use vicious circle”: “When you really need a debugger, you’re
not willing to learn a new tool. When you’re willing to learn a new tool, you don’t really
want to learn a debugger.”

Wadler records the story [18] of the Standard ML debugger [13] that was deeply intertwined
with the compiler and runtime of the SML/NJ Standard ML compiler. As the SML/NJ
implementation evolved, the debugger fell out of step, and is no longer available.

The implementations described above all suffer, to a lesser or greater extent, from a lack
of what Marlow|[6] calls accessibility. They provide only for a subset of the language, or
require changes to be made to build environments, or do not scale well. So there is often one
or more fundamental impediments to their use — they are not accessible. A debugger must
be as accessible as a compiler. Marlow claims that the most complete Haskell trace debugger,
Hat [19], remains largely unused due to a lack of such accessibility — for example, it must
be modified to support new third-party libraries. We intend, then, to bake in the correct
design decisions to support widespread applicability (and thus adoption) from the beginning,
even if it is at the expense of other desirable characteristics (such as speed). We aim for our
system to a) be able to support the whole language by design; b) be suitable for any build
environment where OCaml programs can already be built; and c¢) be abstracted from the
compiler, and thus be robust to advances in the language and runtime environment. Thus,
instead of imagining the perfect visualization, writing a toy system, and worrying about how
to extend it to a practical one later, we will make design decisions based on the practicalities,
and work backward from our goal. Even if our system is initially a toy in the sense that
it does not support the full language, it is not a toy in terms of its integration with the
language and runtime, and so extending it to the full language should be technologically

Visualizing the Evaluation of Functional Programs for Debugging

straightforward (though a sizeable piece of work). Our litmus tests are these: 1) Can our
system be used to debug any OCaml program where source is available, even if uses external
libraries? 2) Can our system support development of a complex system such as the OCaml
compiler itself? 3) Most importantly, of course, do people actually choose to use it?

We shall, therefore, take an extremist approach: we shall worry about Marlow’s accessib-
ility foremost, and everything else second. Wadler [18] writes: . ..there are few debuggers or
profilers for strict [functional] languages, perhaps because constructing them is not considered
research. This is a shame, since such tools are sorely needed, and there remains much of
interest to learn about their construction and use.” We aim to right this wrong.

“

4 Simple Visualizations

As is traditional, we consider a program for calculating the factorial of a positive number,
with 4 as our input:

let rec factorial n =

if n = 1 then 1 else n * factorial (n - 1)
in

factorial 4
The upper portion of Figure 1 shows a naive evaluation of this program. This is certainly
not how we would write such an evaluation on paper. Although the evaluation shown is
self-contained in the sense that each line of it is a valid program, which might seem a useful
property, it is hard to see what is going on. It is large, both in width (how long the expression
becomes) and length (how many lines are needed). Writing each evaluation step over multiple
lines as we did with the original program above would not only increase the length, but make
it difficult to visually compare adjacent lines. We must reduce the amount of information
shown, even in this simple case.

Look now at the lower part of Figure 1, which shows the output of our prototype system.
The following differences are apparent: a) We have removed the definition of the factorial
function itself. Since it is recursive, its name will appear in the expression anyway; b) We
have avoided printing any reduction step which leads to an expression such as if false or
if true; ¢) We have not shown the intermediate steps of simple arithmetic which reduce
4 % (3% (2% 1)) to 24; d) We have removed trivial arithmetic (like subtracting one), even
when it involves variable names, such as reducing n - 1 to 3 directly rather than via 4 - 1;
e) We have removed let bindings which apply to the whole expression to the left hand side
of the => arrow to avoid too many let n = ... instances making the expression too wide; f)
We have used some simple syntax colouring in the form of bold for keywords; and g) We
have underlined the expression to be reduced at each step. All these changes have been made
automatically. Each step is no longer a valid OCaml program, but the increase in readability
is significant. Clearly, for larger programs, such elision will be even more important, since the
focus needs to be on the currently-evaluating subexpression of a potentially huge expression
representing the whole program. Note that all the intervening steps of the computation
are performed, but certain lines are not printed. This means that the finer details of the
computation may be inspected upon demand.

In the program trace we have already exhibited, it is clear that for realistic programs, the
program trace (both its width and its length) may be significant. This issue is discussed in
some detail by Taylor [12] and Pajera-Flores [7]. A practical solution, we claim, must involve
providing ways of a) eliding information within a single step (reducing the width); b) eliding
whole steps (reducing the length); c) searching the resultant trace, if it is still too large to

J. Whitington and T. Ridge

spot the bug; and d) moving backward and forward through the trace to connect cause and
effect in the computation.

If we wish to be able to reduce traces on command to find a bug in a morass of data,
we shall need a concise and powerful way for the programmer to describe the elisions and
searches required. That is to say, we need to have a way for the programmer to translate
“I'm sure this bug has something to do with the tree data type, and I know it must happen
after the tree has been populated, but before the last element is removed. I know the proximate
cause is a Not_found exception being raised.” into something the computer can understand,
and which results in a reduced, concise, useful trace.

5 Other Kinds of Computation

Although the primary challenge is one of scale, we must consider also non-functional compu-
tation (such as the use of input/output or mutable data). There follows a brief discussion of
several of these, to give a flavour of the complications involved. There are plenty of others,
of course. For example, we have yet to explore the visualization of concurrent or parallel
execution.

5.1 Exceptions

Though exceptions can be explained using the same term-rewriting rules as any other
functional construct, it is likely that some special treatment will be necessary, especially for
the visualization of larger programs. Some of the complications of exception visualization
for imperative languages are described by Shah [10], many of which will apply in our
case too. Exceptions are important, of course, because they are used for dealing with
illegal states, a common cause of problems which we end up debugging. Additionally,
and somewhat unusually, exceptions are frequently used in OCaml programs not just for
genuinely exceptional situations, but for local control flow. So it is especially important that
the debugger’s approach to exceptions is lightweight.

5.2 Input/Output and System Primitives

Consider the following program, which reads a line from standard input, and then prints it
on standard output:

print_string (input_line stdin)

Do we separate the output of the program from the output of the debugger, or is it better to
show everything interleaved? In addition, how do we deal with print_int and input_line,
which are members of the most basic parts of the Standard Library, themselves defined
in terms of system primitives? In the present prototype, the output of the program and
the debugger are interleaved. Here is a session, with the Standard Library and primitive
operations elided, which is the default:

print_string (input_line <in_channel>)
SLATE
SLATE=> ()

(We typed the word “SLATE”). If the user really wants the gory details of the inside of the
Standard Library, they can be shown instead:

print_string (input_line <in_channel>)
=> print_string (let x = <in_channel> in <input_line»)

Visualizing the Evaluation of Functional Programs for Debugging

‘paut[repun st dejs yora Ul Padnpal aq 0} UolsseIdxa ay],
‘posn ueaq sey SunysIysiy xejuds o[dwIs pue ‘3Jo[oY) UO ULIILIM dIe UOIssaIdxe o[oym oy} Ul onbrun suorsseidxe 38T ‘UOIIPPR U] T - £ Sk yons suolyerado
re1atry (p pue orewjLe jo uoryiod [euy oy (O {UOIsseIdxe o) Ul PAUOIUSW UOIJOUN] SAISINOSI ® JO UOIITUYSP oY) (¢ {JONIISU0D FT YY) JO UOIjen[essd o) Jo syred
(e Burprfe ‘euo pewwuLl) A[[esrjewroine ue Aq pamof[o] ‘uoren[eas ay) jo dejs yoes SUIMOYS F TRTIOIOR]I JO UOIIRN[RAS 9} JO SULISPULI oATRU Y T a4nSi4

YT *<=
(T#T) *€) ¥ <=

((((T - u) TeTI030eJ x U OST® [UdUF [= U JI) % C) * €) x ¥ <= [=1
((T TBTIOIO®T * T) * €) * ¥ <=

(((T = ™) TeTIOIORY % U) % €) * § <= g =1

(((T - U) TeTI0I0C] x U ©ST® | UeUs | = U JT) * €) * ¥ <= ¢ =1
(T TSTTOM®T * €) * ¥ <=

((T = W) TeTIO0IOBI % U) x F <= € =1

((T - W) TeTJ03de] % U BST® | UWdYL [= U JI) x & <= € =1U
T TETIONET x 7 <=

(T - @) TerIogdey x U <= § =1

(T - U) [eTIO010B] % U OST® | WOYY | = U JT <= § = U
$ TerIonoe]

vC <=

9 x ¥ <=

@ *x€) xv <=

(T *2) *€) % <=

((((T - w) TeTIoldey x U 8ST® [USY} 8NJI3 JT UT [= W 18T) *) * €) * ¥ UT (T - W) TeTI0IDeJ x U 8ST@ [WYl [= U JT = U [RTIO}DRI D8I 18] <=
((((T - u) TeTI0I0BI % U ©ST® T UdUYZ [= U JT UT T = U I8T) * ¢) * €) * ¥ UL (I - U) TRTI0IORI % U SST® [USYI [= U JT = U TRTI0IORI D81 18T <=
((T TeTI030®I % Z) * €) x ¥ UL (T - U) TRTIIOIORJ % U BST® [USY} [= U JT = U [RTIIOIORJ 001 18T <=
(((T - 2) TeTIO0I0BI * Z) * €) * ¥ UT (] - U) TBTIOIORT % U ©ST® [WdY3 T = U JT = U TRTIOIDBI D81 18T <=
(((T - u) TeTIOIORI % C UT g = U I8T) * €) * ¥ UL (T - U) [RTI0IOBI % U SST® [UWdY3l [= U JT = U TRTI0IORI D81 18T <=
(((T - u) TeTIOIORI % U UT g = U I8T) * €) * ¥ UT (T - U) TBTI0IOBI % U 8ST® [UWdY3l [= U JT = U TRTI0IORJ D81 18T <=
(((T - u) TBTIO}OBI % U SSTd® T USY3} oSTeJ JT UT g = U I9T) * €) % & UT (] - U) TBTIOIOBRJ % U ©STd T UdY3} [= U JT = U TBTIOIOBRJ D8I 38 <=
(((T - u) TRTIOIORY % W ©ST® [UWeU3 [= U JT UT g = U 38T) * €) % ¥ UT (] - U) TBTIOIOBJ % U ©ST® T U3 [= U JT = U [RIIOIORJ 081 38T <=
(Z TRTIOIORY % €) % UT (] - U) TBTIOIOBF % U ©ST®] U3 | = U JT = U TBTIOIOBJ 08I 38T <=
((T - €) TeTIOIOBYI * €) x § UT (T - U) TBTIOIORF % U SST® T USY} T = U JT = U TBTIIOFORF O0I I1BT <=
((T - U) TRTIOIORF % € UT € = U 38]) x UT (] - U) TBTIOIDBJ % U ©ST® T UBY}] = U JT = U TBTIOORJ O8I 38T <=
((T - u) TeTI030BF % U UT ¢ = U 38T) % § UT (] - U) TeTIOIDRJ % U ©ST[®] UdY3 [= U JT = U [BTIOIORF 00X 18] <=
((T - u) TerIoldey % U ©STO® T UdY} ©STRF JT UT € = U 38T) % § UT (] - W) TeTI0IDRJ % U ©ST[® T UdY3 [= U JT = U [BTIOIORJ 00X 18] <=
((T - W) TeTI03dey % U ®STO T UYL [= U JT UT € = U 18T) % § UT (] - W) TeTI0IDRJ % U ©S[® T UdYL [= U JT = U [BTIOIORJ 00X 18] <=
€ TRTIOIORY % § UT (] - U) TBTIOIOB] % U ©ST® [USU) [= U JT = U [RTIOIORJ D8I 18T <=
(T - ¥) TeTIoaoe] % § UT (] - U) TeTIO01D0B] % U &STe] Uyl | = U JT = U TeTIOQO®] D8I 18] <=
(T - U) TRTIOAOBRI % § UT § = U 48T UT (] - U) TeTIO01D®] % U S8 [UdYl [= U JT = U TRTIOIDR] DX 18] <=
(T - U) TRTIOADBRI % U UT § = U 98T UT (] - U) TeTIO01D®] % U S8 [UdYL [= U JT = U [RTJIO0IDR] D8I 18] <=
(T - u) TeTIO1DBI % U ©ST®] UsYl STeJ JT UT § = U 48T UT (] - U) TRTIOIOB] % U OSTS® [USY] [= U JT = U [RTIOIOR] D8I 18T <=
(T - u) TRTIOAOBRI % U ©ST® [USYY T = U JT UT § = U 28T UT (] - U) TeTI01DB] % U &S[®] U8Yl [= U JT = U [BTIOIDBRI D8I 18] <=
¥ TRTIO030BRI UT (] - W) [RTIOIORY % U ©ST® [USUZ [= U JT = U [RTIOIORF D0I 38T

J. Whitington and T. Ridge

=> print_string <input_line»

SLATE

=> print_string "SLATE"

=> let x = "SLATE" in output_string <out_channel> x

=> let x = "SLATE" in (let x = <out_channel> in fun y -> <output_string») x
=> let x = "SLATE" in (fun y -> let x = <out_channel> in <«output_string») x

=> (fun y -> let x = <out_channel> in <«output_string») "SLATE"
=> 1let y = "SLATE" in let x = <out_channel> in <«output_string»
=> let y = "SLATE" in <«output_string»

=> <output_string»

SLATE=> O

Abstract data types for standard input and output channels have been written <thus>. The
invocation of a genuine system primitive (rather than just a standard library function) is
written with double angle brackets around it «thus». You can see why it is usually sensible
to elide such information. We are not typically debugging libraries, but our own program.
Until we are sure a library is at fault, we don’t want to delve into its internals. This is just
one example of the importance of mechanisms of elision in trace debugging.

5.3 Mutability

The OCaml language is what has been termed a “functional-first” language. That is to say,
whilst we may tend to write in a pure functional style, we may also use mutable cells to hold
changing values. Thus, it is necessary either to ensure that the contents of a cell is always
displayed in the printed evaluation step, or that there is another way for the user to see
it or request to see it. In the latter case, which is probably preferable, we may simply use
techniques from the broad range available in traditional debuggers for imperative languages.

6 Implementation Notes

The present prototype provides visualization for a subset of the OCaml language, together
with a number of methods for elision of information to produce more reasonable traces. Our
interpreter is, thus far, only a thousand lines of code, due to the ease with which we can
use parts of the OCaml compiler: in recent versions of OCaml the compiler is built not only
in executable form, but in library form as compiler-libs. This means that one may write a
program which uses types and functions from the OCaml compiler, for example the Abstract
Syntax Tree type. Our ocamli interpreter is a program of this form: it uses the standard
lexer, parser and type-checker direct from compiler-libs. And so, writing an interpreter for
OCaml programs has required almost no duplication or modification of compiler code. This
has reduced vastly the cognitive load of such an endeavour, and increased the likelihood
that the interpreter will, with little modification, continue to build and function well into
the future. Before compiler-libs, we would have had to copy reams of code from the OCaml
compiler source code, or provide our interpreter as a patch to the OCaml compiler itself.
Both are inadvisable from the perspective of Marlow’s accessibility — that a debugger should
be available in a low-friction manner to users, for any project, at any time.

The prototype implementation is simplistic, using a number of tree-processing passes to
perform the evaluation and elisions, so does not guarantee that the time or space complexity
of interpreting a program is the same as the time or space complexity of compiling and
running that program. We hope to discover in future to what extent such a guarantee
is possible (at least modulo the pretty-printing — clearly, printing out all the stages of a
computation cannot help but increase the time complexity of interpreting it).

Visualizing the Evaluation of Functional Programs for Debugging

7

Conclusion

We have advanced an ambitious but, in our opinion, practical scheme for the implementation

of an interpretive debugger for a popular functional language, and described aspects of the
current prototype. There is much to be done. Will it fall by the wayside like so many other
debuggers? Or have we found the right formula?

—— References

1

10

11

12

13

14

15

16

17

18

19

Mikhail Auguston and Juris Reinfields. A Visual Miranda Machine. Software Education
Conference, 1994.

Robert Bruce Finder, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krish-
namurthi, Paull Steckler, and Matthias Felleisen. DrScheme: A Programming Environment
for Scheme. Journal of Functional Programming, 2002.

Andy Gill. Debugging Haskell by Observing Intermediate Data Structures. In Technical
Report, University of Nottingham, 2000.

Doug Goldson. A Symbolic Calculator for Non-Strict Functional Programs. The Computer
Journal, 1993.

Henry Lieberman. The Debugging Scandal and What to Do About it. Communications of
the ACM, 1997.

Simon Marlow, José Iborra, Bernard Pope, and Andy Gill. A Lightweight Interactive
Debugger for Haskell. Haskell ’07, pages 13-24, New York, NY, USA, 2007. ACM.
Cristébal Pareja-Flores, Jaime Urquiza-Fuentes, and J. Angel Velazquez-Iturbide. Win-
HIPE: An IDE for Functional Programming Based on Rewriting and Visualization. ACM
SIGPLAN Notices, 2007.

Marian Petre and Ed de Quincey. A Gentle Overview of Software Visualization. PPIG
Newsletter, September 2006.

Steve Reeves, Doug Goldson, Pat Fung, Mike Hopkins, and Richard Bornat. The Calculator
Project - Formal Reasoning about Programs. Software Education Conference, 1994.

Hina Shah, Carsten Gorg, and Mary Jean Harrold. Visualization of Exception Handling
Constructs to Support Program Understanding. SoftVis 08, pages 19-28, 2008.

Juha Sorva, Ville Karavirta, and Lauri Malmi. A review of generic program visualization
systems for introductory programming education. Trans. Comput. Educ., 13(4):15:1-15:64,
November 2013.

Jonathan Paul Taylor. Presenting the Lazy Evaluation of Functions. PhD thesis, Queen
Mary, University of London, 1996.

Andrew Tolmach and Andrew W. Appel. A Debugger for Standard ML. Journal of
Functional Programming, 5:155-200, 4 1995.

David S. Touretzky. Visualizing Evaluation in Applicative Languages. Commun. ACM,
35(10):49-59, October 1989.

David Ungar, Henry Lieberman, and Christopher Fry. Debugging and the Experience of
Immediacy. Communications of the ACM, 1997.

J. Urquiza-Fuentes and J. A. Veldzquez-Iturbide. A Survey of Program Visualizations for
the Functional Paradigm. In Proc. 3rd Program Visualization Workshop, pages 2-9, 2004.
Jaime Urquiza-Fuentes and J. Angel Veldzquez-Iturbide. A Survey of Successful Evaluations
of Program Visualisation and Algorithm Animation Systems. 2009.

Philip Wadler. Why No One Uses Functional Languages. SIGPLAN Not., 33(8):23-27,
August 1998.

Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-view tracing
for Haskell: a new Hat. In Preliminary Proceedings of the 2001 ACM SIGPLAN Haskell
Workshop, Firenze, Italy, pages 151-170, 2001.

	Introduction
	Related Work
	Rationale
	Simple Visualizations
	Other Kinds of Computation
	Exceptions
	Input/Output and System Primitives
	Mutability

	Implementation Notes
	Conclusion

