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Abstract. Parsers for context-free grammars can be implemented di-
rectly and naturally in a functional style known as “combinator pars-
ing”, using recursion following the structure of the grammar rules. Tra-
ditionally parser combinators have struggled to handle all features of
context-free grammars, such as left recursion.
Previous work introduced novel parser combinators that could be used
to parse all context-free grammars. A parser generator built using these
combinators was proved both sound and complete in the HOL4 theorem
prover. Unfortunately the performance was not as good as other parsing
methods such as Earley parsing.
In this paper, we build on this previous work, and combine it in novel
ways with existing parsing techniques such as Earley parsing. The result
is a sound-and-complete combinator parsing library that can handle all

context-free grammars, and has good performance.

1 Introduction

In previous work [13] the current author introduced novel parser combinators
that could be used to parse all context-free grammars. For example, a parser for
the grammar E -> E E E | "1" | ǫ can be written in OCaml as:

let rec parse_E = (fun i -> mkparser "E" (

(parse_E **> parse_E **> parse_E) ||| (a "1") ||| eps) i)

In [4] Barthwal and Norrish discuss this work:

[Ridge] presents a verified parser for all possible context-free grammars,
using an admirably simple algorithm. The drawback is that, as presented,
the algorithm is of complexity O(n5).

Existing techniques such as Earley parsing [5] take time O(n3) in the length of
the input in the worst case. Therefore, as far as performance is concerned, [13]
is not competitive with such techniques. In this work, we seek to address these
performance problems. We have three main goals for our parsing library.

– The library should provide an interface based on parser combinators.



– The library should handle all context-free grammars.

– The library should have “good” performance.

The challenge is to improve on our previous work by providing Earley-like
performance: O(n3) in the worst case but typically much better on common
classes of grammar. Our main contribution is to show how to combine a combi-
nator parsing interface with an efficient general parsing algorithm such as Earley
parsing. We list further contributions in Section 11. We now briefly outline our
new approach, and then give an overview of the rest of the paper.

Consider the problem of parsing an input string s, given a grammar Γ (a
finite set of rules) and a nonterminal start symbol S. In general, we will work
with substrings si,j of the input s between a low index i and a high index j,
where i ≤ j. In symbols we might write the parsing problem as Γ ⊢ S →∗ si,j .
Suppose the grammar contains the rule S → A B. Then one way to derive
Γ ⊢ S →∗ si,j is to derive Γ ⊢ A →∗ si,k and Γ ⊢ B →∗ sk,j :

Γ ⊢ A →∗ si,k Γ ⊢ B →∗ sk,j

Γ ⊢ S →∗ si,j
(S → A B) ∈ Γ

This rule resembles the well-known Cut rule of logic, in that it introduces an
unknown k in the search for a derivation. The problem is that there is no immedi-
ate way to determine the possible values of k when working from the conclusion
of the rule to the premises. Put another way, a top-down parse of the substring
si,j must divide the substring into two substrings si,k and sk,j , but there is no
information available to determine the possible values of k. Attempting to parse
for all k such that i ≤ k ≤ j results in poor real-world performance.

The traditional combinator parsing solution is to parse prefixes of the sub-
string si,j . Since si,j is trivially a prefix of itself, a solution to this more general
problem furnishes a solution to the original. Moreover, this approach gives possi-
ble candidates for the value k: We first attempt to find all parses for nonterminal
A for prefixes of input si,j ; the results will be derivations for si,k where k ≤ j.
We can then attempt to parse nonterminal B for prefixes of sk,j , since possible
values of k are now known.

We propose a different solution: assume the existence of an oracle that can
provide the unknown values of k. As we show later, this allows one to solve the
problem of parsing context-free grammars using combinator parsing. However,
in the real world we must also provide some means to construct the oracle. Our
answer is simple: use some other parsing technique, preferably one that has good
performance. In this work we use Earley parsing, but any other general parsing
technique would suffice.

There are several technical problems that must be addressed. For exam-
ple, to handle arbitrary grammars, including features such as left-recursion, we
adapt the notion of parsing contexts originally introduced in [13]. A central new
challenge is to reconcile the implementation of Earley parsing with that of com-



binator parsers. For example, consider the following parser1 for the grammar E
-> E E E | "1" | ǫ.

let rec parse E = (fun i → mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E) ≫ (fun (x, (y, z)) → x+ y+ z))
⊕ (a1 ≫ (fun → 1)) ⊕ (eps ≫ (fun → 0))) i)

This parser uses parsing actions to count the length of the parsed input. The
parsing code implicitly embodies the grammar. However, implementations of
Earley parsing require explicit representations of the grammar, such as:

let g = [("E", [NT "E";NT "E";NT "E"]); ("E", [TM "1"]); ("E", [TM "eps"])]

In this representation of the grammar (a finite set of rules, here represented
using a list), rules are pairs, where the left-hand side is a nonterminal (identified
by a string) and the right-hand side is a list of symbols, either nonterminal
symbols such as NT "E" or terminal symbols such as TM "eps".

Our solution to this challenge requires interpreting the parsing combina-
tors in three different ways. The first interpretation embeds a symbol with a
given parser. With this we can define a function sym of parser which takes
a parser as an argument and returns the associated symbol. For example,
sym of parser parse E evaluates to NT "E". The second interpretation builds
on the first to associate a concrete representation of the grammar with each
parser. With this we can define a function grammar of parser which takes a
parser as an argument and returns the associated grammar. For example, eval-
uating grammar of parser parse E returns a record with a field whose value is
the following2:

[("(E*E)", Seq (NT "E", NT "E")); ("(E*(E*E))", Seq (NT "E", NT "(E*E)"));
("((E*(E*E))+1)", Alt (NT "(E*(E*E))", TM "1"));
("(((E*(E*E))+1)+eps)",Alt(NT "((E*(E*E))+1)",TM "eps"));
("E", Atom (NT "(((E*(E*E))+1)+eps)"))]

This is a binarized version of the previous grammar. Note that nonterminals
now have unusual names, such as (E*E). Right-hand sides are either atoms,
binary sequences (of symbols, not nonterminals cf. Chomsky Normal Form), or
binary alternatives. The function grammar of parser allows us to inspect the
structure of the parser, in order to extract a grammar, which can then be fed
to an Earley parser. The Earley parser takes the grammar, and a start symbol,
and parses the input string s. The output from the Earley parsing phase can be
thought of as a list of Earley productions of the form (X → α.β, i, j, l). Here X

1 In the following sections we have lightly typeset the OCaml code. The sequencing
combinator ***> is written ⊗ and associates to the right; the alternative combinator
|||| is written ⊕; and the action function >>>> is written ≫. The notation s.[i]
denotes the i th character of the string s. Records with named fields are written e.g.
〈f1 = v1; f2 = v2〉. Functional record update is written 〈r with f1 = v1; f2 = v2〉.
Otherwise the OCaml syntax we use should be readily understandable by anyone
familiar with functional programming.

2 A second field records the terminal parsers that are used, such as a1 and eps.



is a nonterminal, α and β are sequences of symbols (β is non-empty), and i, j, l
are integers. The meaning of such a production is that there is a rule X → α β
in the grammar such that the substring si,j could be parsed as the sequence
α, and moreover the substring sj,l could be parsed as the sequence β. These
productions can be used to construct an oracle.

The oracle is designed to answer the following question: given a grammar Γ ,
a rule S → A B in Γ , and a substring si,j , what are the possible values of k such
that Γ ⊢ A →∗ si,k and Γ ⊢ B →∗ sk,j? To determine the values of k we look
for Earley productions of the form (S → A.B, i, k, j). Such a production says
exactly that the substring si,j could be parsed as the sequence A B and that
si,k could be parsed as A and sk,j could be parsed as B.

The third interpretation of the parsing combinators follows the traditional
interpretation, except that we do not parse prefixes, but instead we use the oracle

to determine where to split the input string during a parse. In fact, all necessary
parsing information has already been deduced from the input s during the Earley
phase, so this phase degenerates into using the oracle to apply parsing actions

appropriately, in the familiar top-down recursive manner. During this phase we
make use of a parsing context to handle features such as left recursion, and
memoization for efficiency.

In outline, our algorithm cleanly decomposes into 3 phases. Given a parser p
and an input string s we perform the following steps.

1. Extract grammar Γ and start symbol S from the parser p and feed Γ, S and
s to the Earley parser, which performs a traditional Earley parse.

2. Take the Earley productions that result and construct the oracle.
3. Use the oracle to guide the action phase.

Earley parsing is theoretically efficient O(n3) and performs well in practice.
The construction of the oracle involves processing the Earley productions, which
have the same bound as the Earley parser itself, O(n3). Parsing actions involve
arbitrary user-supplied code, so it is not possible to give an a priori bound on
the time taken during the action phase, however, in Section 9 we argue that
the performance of this stage is close to optimal. Thus, we argue that our ap-
proach overall results in close-to-optimal (i.e. “good”) asymptotic performance.
In Section 9 we also provide real-world evidence to support these claims.

In this paper we present a version of our code, called mini-P3, that focuses
on clarity for expository purposes, whilst preserving all important features. The
full P3 code follows exactly the structure we outline here with only minor differ-
ences3. Our implementation language is a small subset of OCaml, essentially the
simply-typed lambda calculus with integers, strings, recursive functions, records
and datatypes. Apart from memoization, the code is purely functional. It should
be very easy to re-implement our approach in other functional languages such
as Haskell, Scheme and F♯. The full code for mini-P3 and P3 can be found in
the online resources at http://www.tom-ridge.com/p3.html.

3 Footnotes describe how mini-P3 differs from P3.



The structure of the rest of the paper is as follows. In Section 2 we give
two key examples, and discuss some common misunderstandings concerning our
approach. In Section 3 we introduce the basic types such as those for substrings
and grammars, and discuss the types related to the parser combinators. The
subsequent sections modularly introduce different aspects of our approach. We
start by defining the sequencing and alternative combinators in Section 4. In
Section 5 we introduce our running example, which we develop further in Sec-
tion 7. In Section 6 we describe the Earley parsing phase and the construction
of the oracle. In Section 8 we discuss the role of parsing context and the use
of memoization to make the action phase efficient. In Section 9 we report on
various experiments to measure performance. In Section 10 we discuss related
work, and in Section 11 we conclude.

An extended version of this paper appears in the online resources. This in-
cludes further sections discussing motivation, mathematical preliminaries, fur-
ther examples, parsing context, memoization and soundness and completeness.
For space reasons this material cannot be included here.

2 Example

We introduce some example parsers to illustrate our approach, and clarify as-
pects of our approach that are commonly misunderstood. An efficient parser for
the grammar E -> E E E | "1" | ǫ is:

let tbl = Hashtbl.create 0
let rec parse E = (fun i → memo p3 tbl (mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E) ≫ (fun (x, (y, z)) → NODE(x, y, z)))
⊕ (a1 ≫ (fun → LEAF(1))) ⊕ (eps ≫ (fun → LEAF(0))))) i)

Our approach is complete in that it returns all “good”4 parse trees. There are an
exponential number of such parse trees. For example, for input length 19, there
are more than 4 ∗ 1017 parse trees, but as with most exponential behaviours it
is not feasible to actually compute all these parse trees. The following parser
is identical except that, rather than returning parse trees, it computes (in all
possible ways) the length of the input parsed:

let tbl = Hashtbl.create 0
let rec parse E = (fun i → memo p3 tbl (mkntparser "E" (
((parse E ⊗ parse E ⊗ parse E) ≫ (fun (x, (y, z)) → x+ y+ z))
⊕ (a1 ≫ (fun → 1)) ⊕ (eps ≫ (fun → 0)))) i)

Naively we might expect that this also exhibits exponential behaviour, since
presumably the parse trees must all be generated, and the actions applied. This
expectation is wrong. Running this example parser on an input of size 19 returns
in 0.02 seconds with a single result 19. For an input of size 100, this parser
returns a single result 100 in 5 seconds, and over a range of inputs this parser
exhibits polynomial behaviour rather than exponential behaviour. As far as we

4 The notion of “good” parse tree is defined in [13].



type (α, β) fmap = (α × β) list type substring = SS of string × int × int

type term = string type nonterm = string type symbol = NT of nonterm | TM of term

type rhs = Atom of symbol | Seq of symbol × symbol | Alt of symbol × symbol

type parse rule = nonterm × rhs type grammar = parse rule list

type raw parser = substring → substring list

type ty oracle = (symbol × symbol) → substring → int list

type local context = LC of (nonterm × substring) list

let empty fmap = [] let empty context = (LC [])
let empty oracle = (fun (sym1, sym2) → fun ss → [])

Fig. 1. Basic types and trivial values

are aware, no other parser can handle such examples. To make such examples
possible requires: careful engineering of the backend parser (here based on Earley
parsing) so that it is O(n3) in the length of the input; a compact representation
of parse results (using an oracle) that does not require more than O(n3) time to
construct; a semantically-meaningful notion of action when there are an infinite
number of possible parse trees (handled by the parsing context); careful use of
the oracle to guide the action phase; and memoization during the action phase
so that exponentially many possible actions are reduced to a polynomial number
of actual actions. The code above combines all of these aspects whilst presenting
a standard combinator-parsing interface to the programmer. In the rest of the
paper we discuss the techniques and careful engineering that make this possible.

3 Types

Basic types In Fig. 1 we give types for finite maps (represented by association
lists), substrings, terminals, nonterminals, symbols, the right-hand sides of parse
rules, parse rules, and grammars. Note that the rhs type permits only unary rules
(e.g. E -> F) and binary rules (e.g. sequences E -> A B or alternatives E -> A

| B). This is a restriction on the internal representation of the rules and not on
the user of the library.

Raw parsers capture the set of substrings associated to a given terminal.
They can be more-or-less arbitrary OCaml code5. Given a substring SS(s, i, j),
a raw parser returns a list of substrings SS(s, i, k) indicating that the prefix
SS(s, i, k) could be parsed as the corresponding terminal. For example, the raw
parser raw a1 consumes a single 1 character from the input:

let raw a1 (SS(s, i, j)) = (if i < j && s.[i] = ′1′ then [SS(s, i, i+ 1)] else [])

5 A raw parser should behave as a pure function, and should return prefixes of its
argument. For a fully formal treatment of the parsers associated with terminals
see [13].



type (α, β, γ) sum3 = Inl of α | Inm of β | Inr of γ
type inl = unit type outl = symbol

type mid = 〈 rules : parse rule list; tmparsers : (term, raw parser) fmap 〉
type inm = mid type outm = mid

type inr = 〈 ss : substring; lc : local context; oracle : ty oracle 〉
type α outr = α list

type input = (inl, inm, inr) sum3 type α output = (outl, outm, α outr) sum3

type α parser3 = (input → α output)

let empty mid = 〈rules = []; tmparsers = empty fmap〉

Fig. 2. Parser types and trivial values

The oracle type captures the idea that an oracle takes two symbols sym1, sym2,
and a substring SS(s, i, j), and returns those integers k such that SS(s, i, k) can
be parsed as sym1, and SS(s, k, j) can be parsed as sym2. Finally, the type
local context represents the parsing context, see Section 8.

Parser types The types related to parsers are given in Fig. 2. In our approach,
a parser should be viewed as a collection of three separate functions6. We first
discuss the sum3 type, and the function sum3 which converts three separate
functions to a single function, and the function unsum3 which converts a single
function of the appropriate form to three separate functions. Following this, we
discuss the particular instances of the sum3 type that we use for our parsers.

The sum3 type The sum3 type generalizes the familiar binary sum to three
components. Given three functions of type α → δ, β → ǫ and γ → ζ, we can
form a composite function of type (α, β, γ) sum3 → (δ, ǫ, ζ) sum3. We can define
this composite function explicitly, and moreover define an inverse:

let dest inl (Inl x) = x . . .

let sum3 (f, g, h) = (fun i → match i with

| Inl l → Inl(f l) | Inm m → Inm(g m) | Inr r → Inr(h r))

let unsum3 u = (
let f = (fun x → dest inl (u (Inl x))) in
let g = (fun x → dest inm (u (Inm x))) in
let h = (fun x → dest inr (u (Inr x))) in
(f, g, h))

We use the functions sum3 and unsum3 extensively when defining the parser
combinators. In particular, as a function from inputs to outputs, a parser satisfies

6 This implementation of the combinators is just one of those we have experimented
with, and alternatives are certainly possible.



the extra conditions (not explicit in the type): given an argument of the form
Inl x, the parser produces a result of the form Inl x’, and similarly for Inm and
Inr. Parsers p of type input → α output should be thought of as the sum of three
functions, i.e. p = sum3 (f, g, h).
Left component, extracting a symbol from a parser The left component
of a parser consists of a function of type inl → outl, that is, from unit to symbol.
If parse E is a parser for the nonterminal E, then the expression parse E (Inl ())
should evaluate to Inl (NT "E"). We define the following auxiliary function:

let sym of parser p = (dest inl (p (Inl ())))

Middle component, extracting a grammar from a parser The middle
component of a parser consists of a function of type inm → outm, where inm

and outm are both equal to type mid. The middle component of a parser is
therefore of type mid → mid. The mid type represents the grammar associated
with a parser. The middle component of a parser such as parse E is a grammar
transformer, that takes a grammar and extends it with extra rules. The type
mid is a record type with two fields. The first is a list of parse rules. The second
is a finite map from terminals to raw parsers. If parse E is a parser for the
nonterminal E, then the expression parse E (Inm m) will evaluate to a value of
the form Inm m’, where m’ is m augmented with rules for the nonterminal E
(and all nonterminals reachable from E), and the terminal parsers involved in
the definition of parse E (and all terminal parsers involved in the definition of
nonterminals reachable from E). We can then define grammar of parser:

let grammar of parser p = (dest inm (p (Inm empty mid)))

Right component, recursive descent parser The right component is a func-
tion of type inr → α outr, where α outr = α list. This resembles the traditional
type of a combinator parser: a function from a string to a list of possible values.
We work with substrings rather than strings, so an input i of type inr contains
a component i.ss of type substring. Two additional fields are present: i.oracle
is an oracle that indicates how to split the input when parsing a sequence of
symbols, and i.lc is a parsing context that allows combinator parsers to handle
all context-free grammars. We discuss these additional fields further in the fol-
lowing sections. The output type α outr is simply a list of values at an arbitrary
type α.

4 Parsing combinators

In the previous section we discussed the α parser3 type and related types. In this
section we give the definition of the sequencing combinator p1 ⊗ p2. The defi-
nition of the alternative combinator p1 ⊕ p2 follows the sequencing combinator
mutatis mutandis. The following section illustrates the use of these combinators
on a simple example.

Consider the left component of the sequencing combinator. This takes two
parsers p1 and p2 and produces the left component (a function from unit to
symbol) of the parser p1 ⊗ p2:



let seql p1 p2 = (fun () → let (f1, , ) = unsum3 p1 in

let (f2, , ) = unsum3 p2 in let rhs = Seq(f1 (), f2 ()) in mk symbol rhs)

The left component is a function from unit argument () to a symbol represent-
ing the sequential combination of the two underlying parsers. We use the auxil-
iary function mk symbol to generate new symbols for possible right hand sides.
These new symbols are always nonterminals. The requirement on mk symbol

is simply that it should be injective on its argument: if mk symbol rhs’ =
mk symbol rhs then rhs’ = rhs7. For example, with the current implementation,
evaluating mk symbol (Seq(NT "E",NT "E")) returns (NT "(E*E)") 8.

The middle component for the combination p1 ⊗ p2, of type mid → mid,
transforms a list of rules by adding a new rule representing the sequencing of p1
and p2. It should also call the underlying parsers so that they in turn add their
rules.

let seqm p1 p2 = (fun m → let NT nt = seql p1 p2 () in
if List.mem nt (List.map fst m.rules) then m else (
let (f1, g1, ) = unsum3 p1 in

let (f2, g2, ) = unsum3 p2 in

let new rule = (nt, Seq(f1 (), f2 ())) in
let m1 = 〈 m with rules = (new rule :: m.rules) 〉 in
let m2 = g1 m1 in let m3 = g2 m2 in m3))

Note that the code first checks whether the nonterminal nt corresponding to
p1 ⊗ p2 is already present in the rules. If so, this nonterminal has already been
processed, and there is no need to continue further. This check also prevents non-
termination of seqm when dealing with recursive grammars. If the nonterminal
is not present, then the new rule is constructed, added to the list of rules, and
then the middle components g1 and g2 of the parsers p1 and p2 are invoked in
turn, to add their rules.

The right component of the sequencing combinator takes two parsers p1 of
type α parser3, and p2 of type β parser3, and produces the right component of
the parser p1 ⊗ p2, of type inr → (α × β) outr.

7 Related to this is the requirement that users do not annotate two different parsers
with the same nonterminal; the following must be avoided:

let rec parse E = (fun i → mkntparser "E" . . . i)
and parse F = (fun i → mkntparser "E" . . . i)

There seems no way to enforce this constraint using types. An alternative is to use
a gensym-like technique to construct arguments to mkntparser automatically. This
ensures uniqueness of names, but requires non-purely-functional techniques.

8 Generated names should not clash with user names. The traditional solution is to
incorporate a “forbidden” character, not available to users, into generated names. A
better approach would use a more structured datatype than strings for the names
of nonterminals. For simplicity, we stick with strings and assume the user does not
use symbols such as * in the names of nonterminals.



let seqr p1 p2 = (fun i0 →
let sym1 = sym of parser p1 in let sym2 = sym of parser p2 in

let ks = i0.oracle (sym1, sym2) i0.ss in
let SS(s, i, j) = i0.ss in
let f1 k = (
let rs1 = dest inr (p1 (Inr 〈 i0 with ss = (SS(s, i, k)) 〉)) in
let rs2 = dest inr (p2 (Inr 〈 i0 with ss = (SS(s, k, j)) 〉)) in
list product rs1 rs2) in

List.concat (List.map f1 ks))

The function seqr first determines the symbols sym1 and sym2 correspond-
ing to the two underlying parsers. It then calls the oracle with the appropriate
symbols and substring i0.ss = SS(s, i, j). The resulting values for k are bound
to the variable ks. For each of these values k, parser p1 is called on the substring
SS(s, i, k) and p2 is called on the substring SS(s, k, j). The results are combined
using the library functions list product (which takes two lists and forms a list
of pairs) and List.concat. The corresponding right component altr for the alter-
native combinator is much simpler: as with traditional combinator parsers, the
results of the parsers p1 and p2 are simply appended.

We can now define the sequential combination p1 ⊗ p2. This uses seql, seqm
and seqr to construct a new parser of type (α × β) parser3 from a parser p1 of
type α parser3 and a parser p2 of type β parser3.

let p1 ⊗ p2 = (fun i0 → let f = seql p1 p2 in

let g = seqm p1 p2 in let h = seqr p1 p2 in sum3 (f, g, h) i0)

The alternative combination p1 ⊕ p2 is identical, except that seql becomes
altl and so on. We also define the “semantic action” function, which takes a
parser p of type α parser3 and a function f from α to β and returns a parser
of type β parser3, by mapping the function f over the list of values in the right
component. Apart from the fact that we now have three components to deal
with, this is the approach taken by traditional parser combinators.

let p ≫ f = (fun i → match i with | Inl → (Inl (dest inl (p i)))
| Inm → (Inm (dest inm (p i))) | Inr → (Inr (List.map f (dest inr (p i)))))

Finally, we turn to the auxiliary functionmkntparser. This function allows the
user to introduce concrete names for nonterminals, to label the corresponding
code for parsers: let parse E = (fun i → mkntparser "E" . . . i). At this stage,
we introduce a version of mkntparser that does not deal with context. In Section
8 we add the ability to handle context.

let mkntparser’ nt p = (fun i → match i with

| Inl () → Inl (NT nt)
| Inm m → (if List.mem nt (List.map fst m.rules) then Inm m else (

let sym = sym of parser p in

let new rule = (nt,Atom sym) in
p (Inm 〈 m with rules = (new rule :: m.rules) 〉)))

| Inr r → (let Inr rs = p i in Inr (unique rs)))



For the left component, mkntparser’ simply returns a symbol NT nt corre-
sponding to the user supplied label nt. For the middle component, the parser
p has a corresponding symbol sym. In terms of the grammar, we should add a
new rule nt → sym. Thus, when passed an argument Inm m we add this new
rule before recursively invoking the underlying parser p. The right component is
unchanged except that as an optimization we return only unique results.

As well as mkntparser’, we have an auxiliary function mktmparser whose
purpose is similar: to introduce concrete names for terminals. This is neces-
sary because the middle component m, as well as accumulating the grammar
rules in the field m.rules, also accumulates named terminal parsers in the field
m.tmparsers.

5 Example

We can now define an example parser. At this stage, we have no way to con-
struct an oracle automatically, so we will hand-code this aspect of the parser. In
addition, we have not dealt with the parsing context, so we will not be able to
handle grammars such as E -> E E E | "1" | ǫ. We will make use of the raw
parser raw a1 from Section 3. First, we define our terminal parser:

let a1 = mktmparser "1" raw a1

A parser for the grammar E -> E E E | "1", where the actions count the num-
ber of 1s, is:

let rec parse E = (fun i → mkntparser’ "E" (
((parse E ⊗ parse E ⊗ parse E) ≫ (fun (x, (y, z)) → x+ y+ z))
⊕ (a1 ≫ (fun → 1))) i)

In order to run our parser on some input, we need to supply an oracle. At this
point, we simply hand-code the oracle. The role of the oracle is to determine,
given two symbols sym1, sym2, where to cut an input substring SS(s, i, j) into
two pieces SS(s, i, k) and SS(s, k, j), so that the first can be parsed as sym1 and
the second can be parsed as sym2.

let oracle = (fun (sym1, sym2) → fun (SS(s, i, j)) → . . .)

For parse E there are two uses of the sequencing combinator: one correspond-
ing to the expression parse E ⊗ parse E, and one to the first occurence in the
expression parse E ⊗ (parse E ⊗ parse E)9. The two nonterminals that can oc-
cur as arguments to the sequencing combinator are E (corresponding to inputs
which are non-empty sequences of the character 1) and (E*E) (corresponding to
sequences of length at least two). We introduce an auxiliary function upto’ such
that upto’ i j = [i+ 1; . . . ; j− 1] and code the oracle as:

let oracle = (fun (sym1, sym2) → fun (SS(s, i, j)) → match (sym1, sym2) with
| (NT "E",NT("(E*E)")) → (upto’ i (j− 1))
| (NT "E",NT("E")) → (upto’ i j))

9 Recall that the sequencing combinator associates to the right.



We can then run a parser on an input, assuming the existence of the oracle:

let run parser3’ oracle p s = (let i0 = 〈 ss = (SS(s, 0, String.length s));
lc = empty context; oracle = oracle 〉 in

let rs = dest inr (p (Inr i0)) in unique rs)

This simply evaluates the right component of the parser and returns unique
results. We can run the example parser in the OCaml top-level, and OCaml
responds with the expected result:

let = run parser3’ oracle parse E "1111111"

− : int list = [7]

We can also examine the left and middle components of our example parser.
Most interesting is the middle component:

let m = grammar of parser parse E

val m: mid = 〈rules = [("(E*E)", Seq (NT "E", NT "E"));
("(E*(E*E))", Seq (NT "E", NT "(E*E)"));
("((E*(E*E))+1)", Alt (NT "(E*(E*E))", TM "1"));
("E", Atom (NT "((E*(E*E))+1)"))];

tmparsers = [("1", < fun >)]〉

The result is a record m. The m.rules field contains a concrete representation of
the grammar, with nonterminals corresponding to every use of the sequencing
and alternative combinators. In addition, them.tmparsers field represents a finite
map from terminals to the corresponding raw parsers. In this example, there is
only one entry for the terminal "1".

In this section we have worked through the definition of a simple parser,
and seen how the machinery introduced in previous sections allows us to extract
a concrete representation of the grammar from code such as parse E. With a
concrete representation of the grammar, we can use a method such as Earley
parsing to determine the information necessary to construct an oracle, and then
finally use the oracle to guide the action phase of the parse.

6 Earley parsing and construction of the oracle

We feed the concrete representation of the grammar, with the input string
and start symbol, to an Earley parser. The resulting Earley productions can
then be processed to form an oracle. As described in Section 1 an Earley pro-
duction is of the form (X → α.β, i, j, l), where (X → α.β, i, j) is an Ear-
ley item, β is non-empty, and l indicates that β could be parsed between in-
put positions j and l. We introduce a function earley prods of parser of type
α parser3 → string → production list, which takes a parser and an input and
returns a list of productions. We process these productions using a function
oracle of prods of type production list → ty oracle. For a given parser and input,
these two functions produce a parsing oracle which we use to guide the action
phase. Further details of our approach to Earley parsing are included in the
extended version of this paper, available in the online resources.



7 Example, with Earley parsing

We continue the example from Section 5. Deriving the productions for a given
input and constructing the oracle is straightforward:

let ps = earley prods of parser parse E "1111111"

let oracle = oracle of prods ps

We can query the oracle, for example, to find out where to split the input if we
wish to parse a sequence of two symbols:

let = oracle (NT "E",NT "(E*E)") (SS("1111111", 0, 7))
− : int list = [1; 3; 5]

The resulting list [1; 3; 5] reveals that the sequence of two nonterminals E (E*E)

can be used to parse an input "1111111" by splitting the input at positions 1,
3 and 5. In Section 5 we hand coded the oracle. We can now improve on this by
automatically constructing the oracle from the parser itself.

let run parser3 p s = (let ps = earley prods of parser p s in

let oracle = oracle of prods ps in run parser3’ oracle p s)

We can then run our parser in the OCaml top-level as before:

let = run parser3 parse E "1111111"

− : int list = [7]

8 Context and memoization

Parsing context, introduced in [13], forces all top-down parse attempts to termi-
nate, which means that arbitrary context-free grammars, such as those including
direct and indirect left recursion, can be handled by combinator parsers. In ad-
dition, it can be shown that using parsing context preserves the completeness

of parsing. The technical development involves the definition of the concept of
a “good” parse tree, and all good parse trees are guaranteed to be returned
by our parsers. In the current setting, we use parsing context only when apply-

ing actions. The function mkntparser’ of Section 4 associates a concrete symbol
with a parser, but does not otherwise take parsing context into account. We
also define the function mkntparser (used in the example in Section 2), which is
identical except that it takes parsing context into account. With this change, we
can handle all context-free grammars. Fully formal mechanized definitions are
given in [13], and further discussion on the integration of parsing context in the
current setting is given in the extended version of this paper.

Memoization is a standard technique that involves storing the results of a
function. When invoking the function on an input that has already been seen, the
stored result is returned without re-executing the function. We use memoization
in the action phase to avoid recomputing parse results for parts of the input for
which the results have already been computed. Since this material is standard,
we omit further details, which can be found in the extended version of the paper.



9 Experiments and performance

In this section we discuss performance, mainly by comparing our approach to
the popular Haskell Happy parser generator [1]. We assess the performance of
P3 and Happy across 5 different grammars. P3 outperforms Happy on all of
these grammars, often by a large margin. There are clear opportunities to im-
prove the performance of P3 even further, so these initial results are extremely
encouraging10.
Why Happy? We should compare P3 against a parser that can handle all
context-free grammars: On restricted classes of grammar, we expect that P3
has good asymptotic performance, but absolute performance will not compare
favourably with specialized parsing techniques. We carried out preliminary ex-
periments with general parsers such as ACCENT11, Elkhound12 and SPARK13,
but encountered problems that were seemingly hard to resolve. For example, the
author of SPARK confirmed that SPARK cannot directly handle grammars such
as E -> E E E | "1" | ǫ. The underlying reason appears to be that SPARK
does not make use of a compact representation of parse trees, but works instead
with abstract syntax trees, which is problematic in this case because a single
input can give rise to a possibly infinite number of parse trees. On the other
hand, it was relatively straightforward to code up example grammars in Happy,
and extract the results using a compact representation. We believe Happy rep-
resents a demanding target for comparison because it is mature, well-tested and
extensively optimized code. For example, the authors of the Parsec library take
Happy performance to be the definition of efficiency14.
What to measure? We measure the time taken for each of the three phases
separately. First we compare the time to compute a compact representation of
all parses. This involves comparing our core implementation of Earley’s algo-
rithm with the core GLR implementation in Happy. Second, we examine the
overhead of constructing the oracle. Third, we examine the cost of applying
parsing actions. As a very rough guide, we expect the Earley parsing phase to
be O(n3). The construction of the oracle essentially involves iterating over the
list of productions, which is O(n3) in length, so we might expect that this phase
should also take time O(n3). The time taken to apply the actions depends on
the actions themselves, but we can analyse particular actions on a case-by-case
basis to check that the observed times for this phase are reasonable.
Earley implementation P3 relies on a back-end parser. P3 terminal parsers
are effectively arbitrary functions, whereas existing Earley implementations ex-
pect non-epsilon terminal parsers to parse a single character. For this reason,
it was necessary to extend Earley’s algorithm to treat corresponding “terminal
items”. We implemented an Earley parser from scratch in OCaml, emphasizing

10 Details of the test infrastructure can be found in the online resources.
11 http://accent.compilertools.net/
12 http://scottmcpeak.com/elkhound/
13 http://pages.cpsc.ucalgary.ca/~aycock/spark/
14 “[Our real-world requirements on the combinators]. . . they had to be efficient (ie.

competitive in speed with happy and without space leaks)” [10]



Identifier Grammar

aho s S -> "x" S S | ǫ

aho sml S -> S S "x" | ǫ

brackets E -> E E | "(" E ")" | ǫ

E EEE E -> E E E | "1" | ǫ

S xSx S -> "1" S "1" | "1"

Table 1. Grammars and identifiers

Size Happy Earley

20 0.10 0.10
40 3.18 0.10
60 28.88 0.11
80 144.50 0.13
100 512.09 0.17
Table 2. aho s: time to compute com-
pact representation

Size Happy Earley

100 0.22 0.19
200 2.22 0.53
300 9.75 1.24
400 28.56 2.61
500 71.08 4.42
Table 3. aho sml: time to compute com-
pact representation

Size Earley Oracle

100 0.21 0.35
200 0.67 2.33
300 1.84 6.68
400 3.68 15.21
Table 4. E EEE: Earley parse time and
oracle construction time

Size Earley Oracle Action

100 0.19 0.05 0.22
200 0.49 0.50 2.18
300 1.15 2.19 6.25
400 2.49 4.60 15.4
500 4.35 9.10 31.4
Table 5. aho s: Earley parse time, ora-
cle construction time, and time to apply
actions

both functional correctness and performance correctness (i.e. the implementa-
tion should have worst-case O(n3) performance). For our implementation we
plan to mechanize correctness proofs for functional correctness (the traditional
target of verification) and performance correctness (which as far as we are aware
has not been tackled by the verification community for non-trivial examples).
The implementation is purely functional, but is parameterized by implementa-
tions of sets and maps. The sets and maps are used linearly, so it is safe for the
compiler to substitute implementations which use mutable state and in-place
update. The OCaml compiler does not support this optimization currently, so
we introduce mutable set and map implementations manually. The timings we
give here are for the default configuration which uses mutable state in cases
where the input length is less than 10000, and purely functional datastructures
otherwise. Falling back on purely-functional datastructures results in worst-case
O(n3 lg n) performance, but has the advantage that space consumption is typ-
ically much reduced, which allows us to tackle much bigger inputs than would
be possible with a solely imperative implementation. Of course, for the user the
library always behaves as though it is purely functional.
Grammars and inputs We selected 5 grammars as representative examples of
general context-free grammars, see Table 1. The grammars aho s and aho sml



are taken from a well-known book on parsing [2]. They were used to assess parser
performance in related work [7]. The grammar brackets is a simple grammar
for well-bracketed expressions. The grammar E EEE is the example grammar we
have used throughout the paper. The final grammar S xSx is an example of a
non-ambiguous grammar that cannot be handled using Packrat parsing, taken
from [6]. These grammars attempt to cover different points in the grammar space:
aho s favours parsers which produce left-most derivations; aho sml favours those
that produce right-most derivations (e.g. GLR parsers such as Happy); E EEE is
the simplest highly-ambiguous grammar with no “left-right” or “right-left” bias.
S xSx parses unambiguously, and also favours parsers that produce right-most
derivations. brackets is a standard grammar which tends to expose bugs in
general parsers15.

We used binarized versions of these grammars when measuring the perfor-
mance of our Earley parser, because the P3 library feeds only binarized grammars
to the Earley parser. We tried to check whether binarized versions of the gram-
mars improved the performance of Happy, but at least with a binarized version
of the grammar E EEE, Happy appeared to hang on non-empty input strings.

For inputs, we simply used strings consisting of the characters x or 1, or
well-bracketed expressions, of varying lengths. For S xSx all inputs were of odd
length.

Results: computation of compact representationOur Earley parser clearly
outperformed Happy across all grammars. For the grammars aho s and E EEE

the results are dramatic. For example, Table 2 gives the results for aho s16. For
the grammars aho sml and S xSx which favour the GLR approach of Happy,
Earley clearly outperforms Happy, but the results are within an order of magni-
tude or two. For example, the results for aho sml are given in Table 3. Finally
the grammar brackets caused Happy to appear to loop when parsing input,
possibly due to a bug in Happy17. In addition to absolute performance, we can
also check whether our Earley parser has the expected time complexity. Across
all grammars we observe that our Earley implementation has worst-case perfor-
mance O(n3) with mutable set and map implementations, and O(n3 lg n) with
purely functional set and map implementations. In conclusion, Earley clearly
outperforms Happy on all grammars, sometimes dramatically so. On several
grammars, Happy appeared to loop when attempting to parse inputs.

15 One criticism of these grammars is that they are all “small”. We also experimented
with a large real-world grammar, the current ocamlyacc grammar for OCaml. For a
sample 7,580 byte OCaml program, parsing takes about 1s, whereas ocamlyacc can
parse this file in a fraction of a second. ocamlyacc has several features, such as prece-
dence and associativity annotations, which make parsing deterministic. Our Earley
implementation does not have such features, and thus produces all possible parses
ignoring precedence and associativity. Future work should investigate supporting
these sorts of annotation in Earley parsing. Importantly, Earley parsing using the
OCaml grammar over a range on inputs resulted in almost-linear behaviour.

16 All times in this section are measured in seconds. All sizes are measured in characters.
17 Reported to the authors of Happy on 2013-06-24.



Results: oracle construction How long should we expect the construction
of the oracle to take? One way to construct the oracle is by iterating over the
O(n3) Earley productions. We expect that oracle construction should be O(n3),
and this is what we observe in practice. For example, for the grammar E EEE,
the times for the Earley phase, and the times to construct the oracle, are given
in Table 4. We note that even when oracle construction time is included in the
parse time, our approach outperforms Happy across all grammars.

Results: applying parsing actions We now examine the overhead of applying
parsing actions. Our approach restricts to good parse trees, which are finite
in number. Parsers such as Happy do not restrict to good parse trees, and so
attempting to construct parse trees, or apply actions to, parsing results for a
grammar such as E -> E E E | "1" | ǫ will result in non-termination. Thus,
it is not possible to compare the performance of P3 and Happy, but we can look
at the behaviour of P3 itself.

How long should we expect the action phase to take? Consider the aho s

grammar S -> "x" S S | ǫ, where the actions count the number of characters
parsed. Without memoization we expect the action phase to take an exponential
amount of time. With memoization we can argue as follows. Suppose the time to
apply the actions is dominated by the non-memoized recursive calls, so that we
can ignore the time taken for memoized calls. There are O(n2) non-memoized
calls to parse an S (corresponding to different spans (i, j) of the input string). For
each call, the input must be split in O(n) places, and the single result from each
subparse combined. Thus, each call takes O(n) time, giving an overall O(n3)
execution time for the action phase. In practice, the time taken to look up a
precomputed value in the memoization table cannot be ignored, thus we observe
slightly worse than O(n3) performance. In Table 5 we include times for all phases
to give an idea of the relative costs. Using a naive estimation technique puts the
action phase at O(n3.2). For the grammars aho sml, E EEE and brackets one
can reason similarly. Finally, consider the following code for the grammar S xSx:

let rec parse S xSx = (fun i → memo p3 tbl (mkntparser "S" (
((a1 ⊗ parse S xSx ⊗ a1) ≫ (fun ( , (x, )) → 2 + x))
⊕ (a1 ≫ (fun → 1)))) i)

For an input of length n+1 there should be n/2 recursive calls when applying
the actions, each of which takes a constant time to execute, giving expected
O(n) cost for applying the actions. In practice, the time to apply the actions is
negligible compared to the other two phases.

Conclusion The Earley parser outperforms Happy across all grammars, often
dramatically so. Even though these results are very good, we note that the
performance of our Earley parser is not critical: our approach can be adapted to
use any general parsing implementation as a back end, so we can take advantage
of faster, optimized back-end parsers if they become available.

Constructing the oracle currently involves processing all productions from
the Earley stage. A more intelligent approach would be to process only those
productions that contribute to a valid parse. For example, for the grammar



S xSx there are only O(n) such items. This optimization should reduce the oracle
construction time significantly for many grammars.

Finally, the observed cost of applying the actions for our chosen grammars
agrees with a basic complexity analysis, but there is some scope for reducing the
real-world execution time further e.g. by using more sophisticated memoization
techniques.

Overall, our implementation meets the expected worst-case bound of O(n3)
for parsing and oracle construction, and has very good real-world performance
when compared to Happy. For the action phase, the asymptotic performance
also appears optimal. For all phases, there is scope for improving the real-world
performance still further.

10 Related work

Research on parsing has been carried out over many decades by many re-
searchers. We cannot hope to survey all of this existing work, and so we here
restrict ourselves to consideration of only the most directly related work. The
first parsing techniques that can handle arbitrary context-free grammars are
based on dynamic programming. Examples include CYK parsing [9] and Earley
parsing [5]. The popular GLR parsing approach was introduced in [16]. Combi-
nator parsing and related techniques are probably folklore. An early approach
with some similarities is [12].

The extension of combinator parsing to handle all context-free grammars
using a parsing context, as in this paper, appears in [13]. The performance of
this approach is O(n5), which is not competitive with the approach presented
here (as confirmed by real-world experiments, which we omit for space reasons).
Experiments showed that this previous approach outperformed Happy on the
grammar E EEE, but it seems clear that Happy has poor real-world performance
on many such grammars. As described in that paper, the use of a parsing con-
text is related to a long line of work that uses the length of the input to force
termination [8]. Grammar extraction from combinator parsers, and the use of a
separate back-end parser, was first described in [11]. Our approach improves on
this by providing an efficient back-end, using an oracle (rather than parse trees),
context (to provide meaningful semantics via the notion of “good” parse trees),
and memoization to make the action phase efficient.

Our work is motivated by the desire to provide a combinator parsing interface
with performance competitive with O(n3) general algorithms such as Earley
parsing. In [14] the authors “develop the fully general GLL parsing technique
which is recursive descent-like, and has the property that the parse follows closely
the structure of the grammar rules”. The desire is to improve on the shortcomings
of GLR: “Nobody could accuse a GLR implementation of a parser for, say, C++,
of being easy to read, and by extension easy to debug.” This work is very similar
in its aims to ours. Prototype hand-coded implementations of recognizers for
several grammars, based on the GLL algorithm, are described in [14]. These do
not provide a combinator parsing interface. An implementation of GLL in Scala



that provides the desired combinator parsing interface can be found online18

but the author admits “at the moment, performance is basically non-existent.”
However, we believe that the GLL algorithm represents the main competition
to our approach and we eagerly await future efficient implementations which
provide a combinator parsing interface.

11 Conclusion

We presented an approach to parsing that provides a flexible interface based on
parsing combinators, together with the performance of general approaches such
as Earley parsing. The contributions of our work are:

– We introduced the idea of using an oracle as a compact, functional represen-
tation of parse results. This contrasts with traditional representations such
as shared packed parse forests [3], which are essentially state-based represen-
tations. The idea of using an oracle as the basis of a parsing implementation
is novel.

– We introduced the design of a parsing library split into a front-end combina-
tor parsing library, and a back-end parser (here based on Earley’s algorithm),
connected via the oracle. This combines the well-known benefits of combi-
nator parsing with the efficiency of general-purpose parsing algorithms such
as Earley. This separation has many benefits, for example, the combina-
tor parsers are very simple to implement, and the back-end parser can be
swapped, potentially increasing performance without altering the combina-
tor interface. This split also allows examples, such as those in Section 2, that
are not possible with any other parser currently available.

– To allow arbitrary functions (of the correct type) to be used as terminal
parsers, we extended Earley parsing to deal with “terminal items”.

– We engineered a back-end Earley implementation. This implementation is
functionally correct, and is observed to fit the worst-case time bound of
O(n3) across all our example grammars. As a general parser, it has very good
real-world performance, outperforming the Haskell Happy parser generator19

across all our example grammars, often dramatically so. In future work, we
intend to give mechanized proofs of functional and performance correctness
for this back-end parser.

– We provided the results of real-world experiments that support our perfor-
mance claims.

– We showed how to define front-end parsing combinators which allow a con-
crete representation of the grammar (and terminal parsers) to be extracted
in order to be fed to the Earley parser. These combinators then use the
results of Earley parsing to guide the action phase. We argued that the per-
formance of the action phase, when memoized, was asymptotically close to

18 http://www.cs.uwm.edu/~dspiewak/papers/generalized-parser-combinators.

pdf
19 ACCENT, Elkhound and SPARK are not competitive here, see Section 9.



optimal. No other parsers (apart from [13] which is O(n5)) support applying
actions when working with arbitrary context-free grammars, so a real-world
comparison is unfortunately not possible.

– We showed how to integrate cleanly many different techniques, including
combinator parsing, Earley parsing, the oracle, memoization, and parsing
contexts. In addition the online distribution integrates the technique of box-
ing, allowing the input type to be arbitrary. This permits both scannerless
parsing, and parsing with an external lexer. Even with all these different
techniques, the code is extremely concise and simple.

– We showed how to combine semantic action functions with an Earley parser.
For example, using our approach it is trivial to define parsers that return
parse trees, see Section 2. For other techniques, such as GLL, the construc-
tion of parse trees can itself be a significant research contribution [15].

– We developed extensive examples, available in the online distribution, that
demonstrate the power of our approach.
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