
Simple, functional, sound and complete parsing

for all context-free grammars

Tom Ridge

University of Leicester

Abstract. Parsers for context-free grammars can be implemented di-
rectly and naturally in a functional style known as “combinator parsing”,
using recursion following the structure of the grammar rules. However,
naive implementations fail to terminate on left-recursive grammars, and
despite extensive research the only complete parsers for general context-
free grammars are constructed using other techniques such as Earley
parsing. Our main contribution is to show how to construct simple,
sound and complete parser implementations directly from grammar spec-
ifications, for all context-free grammars, based on combinator parsing.
We then construct a generic parser generator and show that generated
parsers are sound and complete. The formal proofs are mechanized using
the HOL4 theorem prover. Memoized parsers based on our approach are
polynomial-time in the size of the input. Preliminary real-world perfor-
mance testing on highly ambiguous grammars indicates our parsers are
faster than those generated by the popular Happy parser generator.

1 Introduction

Parsing is central to many areas of computer science, including databases
(database query languages), programming languages (syntax), network proto-
cols (packet formats), the internet (transfer protocols and markup languages),
and natural language processing. Context-free grammars are typically specified
using a set of rules in Backus-Naur Form (BNF). An example1 of a simple gram-
mar with a single rule for a nonterminal E (with two alternative expansions)
is E -> "(" E "+" E ")" | "1". A parse tree is a finite tree where each node
is formed according to the grammar rules. We can concatenate the leaves of a
parse tree pt to get a string (really, a substring option) substring of pt accepted
by the grammar, see Fig. 1. A parser for a grammar is a program that takes an
input string and returns parse trees for that string.

A popular parser implementation strategy is combinator parsing, wherein
sequencing and alternation are implemented using the infix combinators **>

and ||| (higher-order functions that take parsers as input and produce parsers
as output). For example2

1 Real BNF requires a nonterminal such as E to be written as <E>.
2 The examples are based on real OCaml implementations, but are formally pseudo-
code because OCaml function names must start with a lowercase letter.

E

E "+" E

"1" "1"

"(" ")"

pt

substring of pt = SOME "(1+1)"

Fig. 1.

E

E E

"1"

E

ǫ ǫ

pt

pt ′

substring of pt = substring of pt ′

Fig. 2.

let rec E = fun i ->

((a "(") **> E **> (a "+") **> E **> (a ")") ||| (a "1")) i

The code works by first consuming a "(" character from the input, then calling
itself recursively to parse an E, then consuming a "+" character, and so on.
Termination is clear because recursive calls to E are given strictly less input to
parse.

Combinator parsing cannot be used directly if the grammar contains rules
such as E -> E E E that are left-recursive. For example, a naive attempt to
implement the grammar E -> E E E | "1" | ǫ 3 gives

let rec E = fun i ->

((E **> E **> E) ||| (a "1") ||| (a "")) i

This code would attempt to parse an E by first expanding to E E E, and then re-
cursively attempting to parse an E on the same input, leading to non-termination.
One solution is to alter the original grammar specification to avoid left recur-
sion, but this is undesirable for several reasons, and may not always be possible.
Despite these drawbacks combinator parsing is conceptually simple, almost triv-
ial to implement, and integrates smoothly with the host language (typically a
simply-typed functional programming language). For these reasons combinator

parsing is extremely popular, and many systems include hand-crafted parsers
based on combinator parsing. In contrast, the complicated implementations of
other parsing techniques have many associated drawbacks. For example, Yacc
produces error messages, such as “shift/reduce conflict”, that are incomprehen-

sible without a good knowledge of the underlying implementation technology.

Contribution The main contribution of our work is to show how to imple-
ment simple, terminating, sound and complete parsers for arbitrary context-free
grammars using combinator parsing. The heart of our contribution is a parser
wrapper (a function from parsers to parsers) check_and_upd_lctxt which wraps

3 The terminal representing the empty string "" is usually written ǫ.

grammar to parser p of tm g sym i = case sym of

TM tm → ((p of tm tm) ≫ (λ v. LF(tm, v))) i || NT nt →
let rules = FILTER (λ (nt ′, rhs). nt ′ = nt) g in

let alts1 = (FLAT ◦ (MAP SND)) rules in

let alts2 = MAP (MAP (λ sym. grammar to parser p of tm g sym)) alts1 in

let p = or list (MAP (then list2 nt) alts2) in
check and upd lctxt nt p i)

The parser generator grammar to parser is parameterized by: a function p of tm which
gives a parser for each terminal; the grammar g (a list of BNF-type rules); and sym,
the symbol corresponding to the parser that should be generated. If sym is a terminal
tm then p of tm tm gives the appropriate parser. If sym is a nonterminal nt then the
relevant rules are filtered from the grammar, the right hand sides are combined into a
list of alternatives alts1 , grammar to parser is recursively mapped over alts1 , and finally
the results are combined using the parser combinators or list and then list2 to give a
parser p. In order to prevent nontermination p is wrapped by check and upd lctxt.

Fig. 3. A verified, sound and complete parser generator (HOL4)

the body of an underlying parser and eliminates some parse attempts whilst pre-
serving completeness. For example, for the grammar E -> E E E | "1" | ǫ , a
terminating, sound and complete parser can be written as follows:

let rec E = fun i -> check_and_upd_lctxt "E"

((E **> E **> E) ||| (a "1") ||| (a "")) i

The first argument "E" to check_and_upd_lctxt is necessary to indicate which
nonterminal is being parsed in case the grammar contains more than one nonter-
minal. In Fig. 3 we define a parser generator for arbitrary context-free grammars
based on this parser wrapper (the reader should not expect to understand the
code at this point). We prove the parser generator correct using the HOL4 theo-
rem prover. Our approach retains the simplicity of combinator parsing, including
the ability to incorporate standard extensions such as “semantic actions”. The
worst-case time complexity of our algorithm when memoized is O(n5). In real-
world performance comparisons on highly ambiguous grammars, our parsers are
consistently faster than those generated by the Happy parser generator [1].

Key ideas Consider the highly ambiguous grammar E -> E E E | "1" | ǫ.
This gives rise to an infinite number of parse trees. A parser cannot hope to
return an infinite number of parse trees in a finite amount of time. However,
many parse trees pt have proper subtrees pt ′ such that both pt and pt ′ are rooted
at the same nonterminal, and substring of pt = substring of pt ′, see Fig. 2. This
is the both the cause of the infinite number of parse trees, and the underlying

cause of non-termination in implementations of combinator parsing.

We call a parse tree bad if it contains a subtree such as pt . If we rule out bad
trees we can still find a good tree for any parse-able input. Moreover, given a
context-free grammar g and input s, it turns out that there are at most a finite

number of good parse trees pt such that substring of pt = SOME s. Thus for a
given grammar we have identified a class of parse trees (the good parse trees)

that is complete (any input that can be parsed, can be parsed to give a good
parse tree) and moreover is finite.

At the implementation level, we construct a function check_and_upd_lctxt

which wraps the body of an underlying parser and eliminates parse attempts
that would lead to nontermination by avoiding bad parse trees. This requires
the parser input type to be slightly modified to include information about the
parsing context (those parent parses that are currently in progress), but crucially
this is invisible to the parser writer who simply makes use of standard parser
combinators. Generalizing this approach gives the parser generator in Fig. 3.
Structure of the paper In Sect. 2 we define the types used in later sections,
and give a brief description of the formalization of substrings. Sect. 3 discusses
the relationship between grammars and parse trees, whilst Sect. 4 discusses the
relationship between parse trees and the parsing context. The standard parsing
combinators are defined in Sect. 5. The new functions relating to the parsing
context, including check and upd lctxt, are defined in Sect. 6. The remainder of
the body of the paper is devoted to correctness. In Sect. 7 we discuss termina-
tion and soundness. In Sect. 8 we formalize informal notions of completeness,
and in Sect. 9 we show that our parser generator produces parsers that are com-
plete. In Sect. 10 we discuss implementation issues, such as memoization and
performance. Finally we discuss related work and conclude. Our implementation
language is OCaml and the complete OCaml code and HOL4 proof script are
available online4, together with example grammars and sample inputs. For rea-
sons of space, in this paper we occasionally omit definitions of straightforward
well-formedness predicates such as wf grammar. We give outlines of the proofs,
including the main inductions, but do not discuss the proofs in detail. The inter-
ested reader will find all definitions and proofs in the mechanized HOL4 proof
scripts online.
Notation BNF grammars are written using courier, as is OCaml code and
pseudo-code. Mechanized HOL4 definitions are written using sans serif for de-
fined constants, and italic for variables. Common variable names are displayed in
Fig. 4, but variations are also used. For example, if x is a variable of type α then
xs is a variable of type α list. Similarly suffixing and priming are used to distin-
guish several variables of the same type. For example, s, s′, s pt , s rem and s tot

are all common names for variables of type substring. For presentation purposes,
we occasionally blur the distinction between strings and substrings. Records are
written 〈 fld = v; . . . 〉. Update of record r is written r with 〈 fld = v 〉. Func-
tion application is written f x. List cons is written x ::xs. The empty list is [].
List membership is written MEM x xs. Other HOL4 list functions should be
comprehensible to readers with a passing knowledge of functional programming.

2 Types and Substrings

Figure 4 gives the basic types we require. In the following sections, it is formally
easier to work with substrings rather than strings. A substring (s, l, h) repre-

4 http://www.cs.le.ac.uk/~tr61

s :string
l, h :num
s :substring

tm :term = ty term

nt :nonterm = ty nonterm

sym :symbol = TM of term | NT of nonterm

rhs, alts :(symbol list) list
r, rule :parse rule = nonterm × ((symbol list) list)

g :grammar = parse rule list

pt :parse tree = NODE of nonterm × parse tree list | LF of term × substring

q :simple parser = substring → parse tree list

lc :context = (nonterm × substring) list
i :ty input = 〈 lc : context; sb : substring 〉
p :α parser = ty input → (α × substring) list

ss of tm :ty ss of tm = term → substring set

p of tm :ty p of tm = term → substring parser

Fig. 4. Common variable names for elements of basic types, with type definitions

string s = let (s, l, h) = s in s

low s = let (s, l, h) = s in l

high s = let (s, l, h) = s in h

len s = let (s, l, h) = s in h − l

wf substring (s, l, h) = l ≤ h ∧ h ≤ |s|

concatenate two s1 s2 = if (string s1 = string s2) ∧ (high s1 = low s2) then
SOME ((string s1 , low s1 , high s2)) else NONE

concatenate list ss = case ss of [] → NONE || [s1] → (SOME s1) || s1 ::ss1 → (
case concatenate list ss1 of NONE → NONE || SOME s2 → concatenate two s1 s2)

inc low n s = let (s, l, h) = s in (s, l + n, h)
dec high n s = let (s, l, h) = s in (s, l, h− n)
inc high n s = let (s, l, h) = s in (s, l, h+ n)
full s = (s, 0, |s|)
toinput s = 〈 lc = []; sb = s 〉

Fig. 5. Common functions on substrings

sents the part of a string s between a low index l and a high index h. The type
substring consists only of well-formed triples (s, l, h). Common substring func-
tions, including the well-formedness predicate, are defined in Fig. 5. Returning
to Fig. 4, the type of terminals is term; the type of nonterminals is nonterm.
Formally terminals and nonterminals are kept abstract, but in the OCaml im-
plementation they are strings. Symbols are the disjoint union of terminals and
nonterminals. A parse rule such as E -> E E E | "1" | ǫ consists of a non-
terminal l.h.s. and several alternatives on the r.h.s. (an alternative is simply a
list of symbols). A grammar is a list of parse rules (really, a finite set) and a
parse tree consists of nodes (each decorated with a nonterminal), or leaves (each
decorated with a terminal and the substring that was parsed by that terminal).
A simple parser takes an input substring and produces a list of parse trees.

Combinator parsers typically parse prefixes of a given input, and return (a
list of) a result value paired with the substring that remains to be parsed:
α preparser = substring → (α × substring) list. Rather than taking just a sub-
string as input, our parsers need additional information about the context. The

context, type context = (nonterm × substring) list, records information about
which nonterminals are already in the process of being parsed, and the sub-
string that each parent parse took as input. The input i for a parser is just a
record with two fields: the usual substring i.sb, and the context i.lc. We em-
phasize that this slight increase in the complexity of the input type is invisible
when using our parser combinators as a library: the only code that examines the
context is check_and_upd_lctxt.

Whilst BNF grammars clearly specify how to expand nonterminals, in prac-
tice the specification of terminal parsers is more-or-less arbitrary. Formally, we
should keep terminal parsers loosely specified. The set pts of ss of tm g of parse
trees for a grammar is therefore parameterized by a function ss of tm such that
LF(tm, s) is a parse tree only if s ∈ ss of tm tm. A function of type ty p of tm

gives a parser for each terminal.

3 Grammars and Parse Trees

Parse trees pt and pt ′ match if they have the same root symbol, and
substring of pt = substring of pt ′. A parse tree has a bad root if it contains
a proper subtree that matches it. For example, in Fig. 2, pt has a bad root be-
cause subtree pt ′ matches it. A good tree is a tree such that no subtrees have bad
roots. The following theorem implies that any parse-able input can be parsed to
give a good tree.

Theorem 1 (good tree exists thm). Given a grammar g, for any parse tree

pt one can construct a good tree pt ′ that matches.

good tree exists thm = ∀ ss of tm. ∀ g. ∀ pt . ∃ pt ′.

pt ∈ (pts of ss of tm g)
−→ pt ′ ∈ (pts of ss of tm g) ∧ (matches pt pt ′) ∧ (good tree pt ′)

Proof. If pt
0
is not good, then it contains a subtree pt and a proper subtree pt ′

of pt that matches pt . If we replace pt by pt ′ we have reduced the number of
subtrees which have bad roots. The transformed tree is well-formed according to
the grammar and matches the original. If we repeat this step, we can eliminate
all subtrees with bad roots.

4 Parse Trees and the Parsing Context

In this section we define an inductive relationship admits lc pt between pars-
ing contexts lc and parse trees pt . We use a context during parsing to elim-
inate parse attempts that would lead to bad parse trees and potential non-
termination. If lc is the empty context [], then the function λ pt . admits [] pt
actually characterizes good trees ie admits [] pt ↔ good tree pt . The defi-
nition of good tree is wholly in terms of parse trees, whilst the parse trees
returned by our parsers depend not only on the parsing context, but on

p1 ∗∗> p2 = λ i.

let f (e1 , s1) =
MAP (λ (e2 , s2). ((e1 , e2), s2)) (p2 〈 lc=i.lc; sb=s1 〉)

in

(FLAT ◦ (MAP f) ◦ p1) i

p1 ||| p2 = λ i. APPEND (p1 i) (p2 i)

always = (λ i. [([], substr i)]) : α list parser

then list (ps : α parser list) = case ps of

[] → always

|| p ::ps → ((p ∗∗> (then list ps))
≫ (λ (x, xs). x ::xs))

then list2 nt = λ ps.

then list ps ≫ (λ xs. NODE(nt , xs))

p ≫ f = (MAP (λ (e, s). (f e, s))) ◦ p

never = (λ i. []) : α parser

or list (ps : α parser list) = case ps of

[] → never

|| p ::ps → (p ||| (or list ps))

Fig. 6. Parser combinators

complicated implementation details of the parsers themselves. The defini-
tion of admits serves as a bridge between these two, incorporating the pars-
ing context, but usefully omitting complicated parser implementation details.
admits lc pt =
let s pt = THE(substring of pt) in
case pt of

NODE(nt , pts) → (¬(MEM (nt , s pt) lc) ∧ EVERY (admits ((nt , s pt) :: lc)) pts)
|| LF(,) → T

The function THE is the projection from the option type: THE(SOME x) = x.
Let s pt = THE(substring of pt). This definition states that, for a parse tree pt

with root nt to be admitted, the pair (nt , s pt) must not be in the context lc,
and moreover if we extend the context by the pair (nt , s pt) to get a context
lc′, then every immediate subtree of pt must be admitted by lc′. Leaf nodes
are always admitted. As an example, consider the bad parse tree pt in Fig.
2 which is not admitted by the empty context, ¬ (admits [] pt). In this case,
(nt , s pt) = (E, "1"), so that lc′ = [(E, "1")] , and clearly ¬ (admits lc′ pt ′). Our
parsers return all parse trees admitted by the empty context, which is initially
empty. The following theorem guarantees that this includes all good trees.

Theorem 2 (admits thm). Good parse trees are admitted by the empty context.

admits thm = ∀ pt . wf parse tree pt −→ good tree pt −→ admits [] pt

Proof. Induction on the size of pt .

5 Terminal Parsers and Parser Combinators

The basic parser combinators are defined in Fig. 6. The standard definition of
the alternative combinator ||| appends the output of one parser to the output of

update lctxt nt (p : α parser) = λ i.

p (i with 〈 lc=(nt , i.sb) :: i.lc 〉)

ignr last (p : α parser) = λ i.

if len (substr i) = 0 then [] else
let dec = dec high 1 in

let inc (e, s) = (e, inc high 1 s) in
((MAP inc) ◦ p ◦ (lift dec)) i

check and upd lctxt nt (p : α parser) = λ i.

let should trim =
EXISTS ((=) (nt , i.sb)) i.lc in

if should trim ∧ (len i.sb = 0) then
[]

else if should trim then

(ignr last (update lctxt nt p)) i
else

(update lctxt nt p) i

Fig. 7. Updating the parsing context

another. The sequential combinator ∗∗> uses the first parser to parse prefixes of
the input, then applies the second parser to parse the remaining suffixes. This
definition is almost standard, except that the parsing context i.lc is the same for
p1 as for p2 . The “semantic action” combinator ≫ simply applies a function to
the results returned by a parser. We generalize the basic combinators to handle
lists (then list, then list2 and or list).

The definition of grammar to parser in Fig. 3 is parametric over a function
p of tm which gives a parser p tm = p of tm tm for each terminal tm. At
the implementation level, p tm can be more-or-less arbitrary. However, for our
results to hold, p of tm is required to satisfy a well-formedness requirement
wf p of tm. For soundness, parse trees pt returned by terminal parser p tm must
be such that substring of pt is a prefix of the input. For completeness the parse
trees produced by a terminal parser p tm for a given prefix of the input should
not change when the input is extended. These conditions are very natural, but
the completeness condition is subtle, and has some interesting consequences, for
example, it rules out lookahead which is common in lexer implementations.

6 Updating the Parsing Context

The parsing context is used to eliminate parse attempts that might lead to non-
termination. In Fig. 7, update lctxt nt is a parser wrapper parameterized by
a nonterminal nt . During a parse attempt the nonterminal nt corresponds to
the node that is currently being parsed, that is, all parse trees returned by the
current parse will have root nt . The parser p corresponds to the parser that
will be used to parse the immediate subtrees of the current tree. The wrapper
update lctxt nt ensures that the context i.lc is extended to (nt , i.sb) :: i.lc before
calling the underlying parser p on the given input i.

The parser wrapper ignr last calls an underlying parser p on the input minus

the last character (via dec high); the unparsed suffix of the input then has the
last character added back (via inc high) before the results are returned. The
purpose of ignr last is to force termination when recursively parsing the same
nonterminal, by successively restricting the length of the input that is available
to parse.

The heart of our contribution is the parser wrapper check and update lctxt nt

which is also parameterized by a nonterminal nt . This combinator uses the con-

text to eliminate parse attempts. As before, nt corresponds to the node that is
currently being parsed. The boolean should trim is true iff the context i.lc con-
tains a pair (nt , i.sb). If this is the case, then we can safely restrict our parse
attempts to proper prefixes of the input i.sb, by wrapping update lctxt nt p

in ignr last. Theorem main thm in Sect. 9 guarantees that this preserves com-
pleteness. At this point we have covered the definitions required for the parser
generator in Fig. 3.

7 Termination, Soundness and Prefix-Soundness

In this section we show that the definition of grammar to parser in Fig. 3 is
well-formed and terminating by giving a well-founded measure that decreases
with each recursive call. We then define formally what it means for a parser to
be sound. We also define the stronger property of prefix-soundness. The parser
generator grammar to parser generates prefix-sound parsers.

The following well-founded measure function is parameterized by the gram-
mar g and gives a natural number for every input i. In Fig. 3, recursive calls
to grammar to parser are given inputs with strictly less measure, which ensures
that the definition is well-formed and that all parses terminate. The function
SUM computes the sum of a list of numbers.

measure g i =
let nts = nonterms of grammar g in

let f nt = len i.sb + (if MEM (nt , i.sb) i.lc then 0 else 1) in
SUM(MAP f nts)

Theorem 3. Recursive calls to grammar to parser are given inputs i′ whose

measure is strictly less than the measure of the input i provided to the parent.

Proof. The proof proceeds in two steps. First, we show by analysis of cases that
the invocation of p when evaluating check and upd lctxt nt p i is called with an
input i′ with strictly less measure than that of i.

((λ i. [(i, s0)]) = p)
−→ MEM nt (nonterms of grammar g)
−→ MEM (i′, s) (check and upd lctxt nt p i) −→ measure g i′ < measure g i

Second, we observe that recursive calls to grammar to parser are nested under
then list2 nt , so that each recursive call receives an input i′′ where either i′′.sb =
i′.sb or len i′′.sb < len i′.sb. In the latter case we have

len s′′ < len s′ −→ measure g 〈 lc = lc; sb = s′′ 〉 ≤ measure g 〈 lc = lc; sb = s′ 〉

We now turn our attention to soundness. The simplest form of soundness
requires that any parse tree pt that is returned by a parser q sym for a symbol
sym when called on input s should conform to the grammar g, have a root
symbol sym, and be such that substring of pt = SOME s.

sound ss of tm g sym q sym = ∀ s. ∀ pt .

wf grammar g

∧ MEM pt (q sym s)
−→
pt ∈ (pts of ss of tm g)
∧ (root pt = sym)
∧ (substring of pt = SOME s)

Standard implementations of the sequential combinator attempt to parse all
prefixes s pt of a given input substring s tot and return a (list of pairs of) a
parse tree pt and the remainder s rem of the input that was not parsed. In
this case, we should ensure that concatenating s pt and s rem gives the original
input s tot .

prefix sound ss of tm g sym p sym = ∀ s tot . ∀ pt . ∀ s rem. ∃ s pt .

wf grammar g

∧ MEM (pt , s rem) (p sym (toinput s tot))
−→
pt ∈ (pts of ss of tm g)
∧ (root pt = sym)
∧ (substring of pt = SOME s pt)
∧ (concatenate two s pt s rem = SOME s tot)

Theorem 4 (prefix sound grammar to parser thm). Parsers generated by

grammar to parser are prefix-sound.

prefix sound grammar to parser thm = ∀ p of tm. ∀ g. ∀ sym.

let p = grammar to parser p of tm g sym in

let ss of tm = ss of tm of p of tm in

wf p of tm p of tm ∧ wf grammar g −→ prefix sound ss of tm g sym p

Proof. Unfolding the definition of prefix sound, we need to show a property of
parse trees pt . The formal proof proceeds by an outer induction on the size of
pt , and an inner structural induction on the list of immediate subtrees of pt .

We now observe that a prefix-sound parser can be easily transformed into a
sound parser: just ignore those parses that do not consume the whole input. For
this we need simple parser of p, which returns those parse trees produced by p

for which the entire input substring was consumed.

simple parser of (p : parse tree parser) =
λ s. (MAP FST ◦ FILTER (λ (pt , s′). substring of pt = SOME s)) (p (toinput s))

Theorem 5 (sound grammar to parser thm). Parsers generated by

grammar to parser are sound when transformed into simple parsers.

sound grammar to parser thm = ∀ p of tm. ∀ g. ∀ sym.

let p = grammar to parser p of tm g sym in

let ss of tm = ss of tm of p of tm in

wf p of tm p of tm ∧ wf grammar g −→ sound ss of tm g sym (simple parser of p)

8 Completeness and Prefix-Completeness

In previous sections we have talked informally about completeness. In this section
we define what it means for a parser to be complete with respect to a grammar.
We also define the stronger property of prefix-completeness.

The simplest form of completeness requires that any parse tree pt that con-
forms to a grammar g and has a root symbol sym should be returned by the
parser q sym for sym when called on a suitable input string.
unsatisfactory complete ss of tm g sym q sym = ∀ s. ∀ pt .

pt ∈ (pts of ss of tm g)
∧ (root pt = sym)
∧ (substring of pt = SOME s)
−→
MEM pt (q sym s)

A grammar g and an input s can give rise to a potentially infinite number
of parse trees pt , but a parser can only return a finite list of parse trees in a
finite amount of time. For such non-trivial grammars, no parser can be complete
in the sense of the definition above. Thus, this definition of completeness is
unsatisfactory. If we accept that some parse trees must be omitted, we can still
require that any input that can be parsed is actually parsed, and some parse
tree pt ′ is returned.
complete ss of tm g sym q sym = ∀ s. ∀ pt . ∃ pt ′.

pt ∈ (pts of ss of tm g)
∧ (root pt = sym)
∧ (substring of pt = SOME s)
−→
matches pt pt ′ ∧ MEM pt ′ (q sym s)

Of course, our strategy is to return parse trees pt ′ as witnessed by
good tree exists thm.A more precise definition of completeness would require a
parser to return all good trees, and main thm from Sect. 9 shows that our parsers
are complete in this sense, given the characterization of good trees via admits.
One advantage of the definition above is that one does not need to understand
the definition of good tree to understand our statement of completeness. We now
introduce the related notion of prefix-completeness. As in the previous section,
prefix-complete parsers can be transformed into complete parsers.
prefix complete ss of tm g sym p sym = ∀ s tot . ∀ s pt . ∀ s rem. ∀ pt . ∃ pt ′.

(concatenate two s pt s rem = SOME s tot)
∧ pt ∈ (pts of ss of tm g)
∧ (root pt = sym)
∧ (substring of pt = SOME s pt)
−→
matches pt pt ′ ∧ MEM (pt ′, s rem) (p sym (toinput s tot))

Theorem 6 (prefix complete complete thm). If p is prefix-complete, then

simple parser of p is complete.

prefix complete complete thm = ∀ ss of tm. ∀ g. ∀ sym. ∀ p.

prefix complete ss of tm g sym p −→ complete ss of tm g sym (simple parser of p)

9 Parser Generator Completeness

Theorem 7 (main thm). A parser p for symbol sym generated by

grammar to parser is complete for prefixes s pt of the input, in the sense that

p returns all parse trees pt that are admitted by the context lc.

main thm = ∀ p of tm. ∀ g. ∀ pt . ∀ sym. ∀ s pt . ∀ s rem. ∀ s tot . ∀ lc.

let p = grammar to parser p of tm g sym in

let ss of tm = ss of tm of p of tm in

wf p of tm p of tm

∧ wf grammar g

∧ wf parse tree pt

∧ pt ∈ (pts of ss of tm g)
∧ (root pt = sym)
∧ (substring of pt = SOME s pt)
∧ (concatenate two s pt s rem = SOME s tot)
∧ admits lc pt

−→
MEM (pt , s rem) (p 〈 lc = lc; sb = s tot 〉)

Proof. The proof is by an outer induction on the size of pt , with an inner struc-
tural induction on the list of immediate subtrees of pt .

A parser is initially called with an empty parsing context ie input i is such
that i.lc = []. We can use admits thm to change the assumption admits lc pt in
the statement of main thm to the assumption good tree pt . We can further use
good tree exists thm to give the following corollary to the main theorem:

Corollary 1. Parsers generated by grammar to parser are prefix-complete.

corollary = ∀ p of tm. ∀ g. ∀ sym.

let ss of tm = ss of tm of p of tm in

let p = grammar to parser p of tm g sym in

wf p of tm p of tm ∧ wf grammar g −→ prefix complete ss of tm g sym p

This combined with prefix complete complete thm gives:

Theorem 8 (complete grammar to parser thm). Parsers generated by

grammar to parser are complete when transformed into simple parsers.

complete grammar to parser thm = ∀ p of tm. ∀ g. ∀ sym.

let ss of tm = ss of tm of p of tm in

let p = grammar to parser p of tm g sym in

wf p of tm p of tm ∧ wf grammar g

−→ complete ss of tm g sym (simple parser of p)

10 Implementation Issues

Code extraction The HOL4 definitions required for grammar to parser are exe-
cutable within HOL4 itself, using either basic term rewriting or the more efficient
strategies embodied in EVAL_CONV. We should expect that evaluating code inside

a theorem prover is relatively slow compared to interpreting similar code using
one of the usual functional languages (OCaml, SML, Haskell). Our OCaml im-
plementations are manually extracted from the HOL4 definitions. An alternative
is to use the HOL4 code extraction facilities which involves pretty-printing the
HOL4 definitions as OCaml, but it is not clear that this step preserves soundness
(the problem is HOL4 type definitions and their relation to ML type definitions).
Terminal parsers Terminal parsers are required to satisfy a well-formedness re-
quirement, but are otherwise more-or-less arbitrary. The OCaml implementation
includes several common terminal parsers that arise in practice. For example,
the function parse_AZS is a terminal parser that parses a sequence of capital
letters. Verification of these terminal parsers is left for future work.
Parsing a grammar specification The parser generator is parameterized by a
grammar g (a list of rules). However, grammars are typically written concretely
using BNF syntax which must itself be parsed. We therefore define the following
syntax of BNF. We have adopted two features from Extended BNF: nonterminals
do not have to be written within angled brackets, and arbitrary terminals can
be written within question marks. The terminal ?ws? accepts non-empty strings
of whitespace, ?notdquote? (resp. ?notsquote?) accepts strings of characters
not containing a double (resp. single) quote character, ?AZS? accepts non-empty
strings of capital letters, and ?azAZs? accepts non-empty strings of letters.

RULES -> RULE | RULE ?ws? RULES

RULE -> SYM ?ws? "->" ?ws? SYMSLIST

SYMSLIST -> SYMS | SYMS ?ws? "|" ?ws? SYMSLIST

SYMS -> SYM | SYM ?ws? SYMS

SYM -> ’"’ ?notdquote? ’"’ | "’" ?notsquote? "’" | ?AZS?

| "?" ?azAZs? "?"

Implementing a parser for this grammar is straightforward. The top-level
parser for RULES returns a grammar. To turn the grammar into a parser, we use
the parser generator in Fig. 3.
Memoization For efficient implementations it is necessary to use memoization
on the function grammar_to_parser. Memoization takes account of two obser-
vations concerning the argument i. First, as mentioned previously, the context
i.lc is implemented as a list but is used as a set. Therefore care must be taken
to ensure that permutations of the context are treated as equivalent during
memoization. The simplest approach is to impose an order on elements in i.lc

and ensure that i.lc is always kept in sorted order. Second, the only elements
(nt,s) in i.lc that affect execution are those where s = i.sb. Thus, before
memoization, we discard all elements in i.lc where this is not the case. For
future work it should be straightforward to add the memoization table as an
extra argument to grammar to parser and then prove correctness.
Theoretical performance Many grammars generate an exponential number of
good parse trees in terms of the size of the input string. Any parser that returns
all such parse trees must presumably take an exponential amount of time to do so.
However, several parsing techniques claim to be able to parse arbitrary context-
free grammars in sub-exponential time. In fact, these parsing techniques do not

return parse trees, but instead return a “compact representation” of all parse
trees in polynomial time, from which a possibly infinite number of actual parse
trees can be further constructed. The compact representation records which
symbols could be parsed for which parts of the input: it is, in effect, a list
of pairs, where each pair consists of a symbol and a substring. If we modify
our parsers so that they return a dummy value instead of parse trees, then the
memoization table is itself a form of compact representation. If we further assume
that terminal parsers execute in constant time, then the time complexity of our
algorithm is O(n5) in the length of the input, since there are O(n2) substrings,
each appearing as input in at most O(n2) calls to the parser, each of which
takes time O(n) to execute5. Absolute real-world performance is better than
this would suggest, because most calls to the parser simply involve looking up
pre-existing values in the memoization table, and so execute very quickly.

Real-world performance Roughly speaking, the larger the class of grammar
that a parsing technique can handle, the worse the performance. For example,
Packrat parsing [5] takes time linear in the size of the input, but cannot deal with
even simple non-ambiguous grammars such as S -> "x" S "x" | "x". Of the
three existing verified parsers, only the Packrat-based TRX parser [11] has any
performance data, a comparison with the purpose-built Aurochs XML parser
and the similar xml-light: as expected TRX is significantly slower. Preliminary
testing using a simple XML grammar indicates that our parsers are competitive:
an unmemoized version of our algorithm can parse a 1.4MB XML file in 0.31
seconds (better than Aurochs, and slightly worse than xml-light). More impor-
tantly, our algorithm is linear time in the size of the input. Aurochs and xml-light
are purpose built XML parsers, and TRX does not handle all context-free gram-
mars, however, there are some techniques such as GLR parsing that can handle
arbitrary context-free grammars. There are very few implementations, but the
popular Happy parser generator [1] is one such. Executing a compiled version
of our memoized parser generator (which interprets the grammar) and compar-
ing the performance with a compiled version of a parser produced by Happy in
GLR mode (where the parser code directly encodes the grammar) on the gram-
mar E -> E E E | "1" | ǫ , with input a string consisting solely of 1s, gives
the following figures. Noticeably, the longer the input, the better our parsers
perform relative to Happy parsers. In fact, parsers generated by Happy in GLR
mode appear to be O(n6) although GLR is theoretically O(n3) in the worst case.
We leave investigation of this discrepancy, and further real-world performance
analysis and tuning, to future work.

Input size/# characters Happy parse time/s Our parse time/s Factor
20 0.19 0.11 1.73
40 9.53 3.52 2.71
60 123.34 30.46 4.05

5 The time complexity is not obvious, and was informed by careful examination of
real-world execution traces. For comparison, the time complexity of Earley parsers,
CYK parsers, and GLR parsers is O(n3).

11 Related work

A large amount of valuable research has been done in the area of parsing. We
cannot survey the entire field here, but instead aim to give references to work
that is most closely related to our own. A more complete set of references is
contained in our previous work [15].

The first parsing techniques that can handle arbitrary context-free grammars
are based on dynamic programming. Examples include CYK parsing [10] and
Earley parsing [4]. In these early works, the emphasis is on implementation
concerns, and in particular completeness is often not clear. For example [16]
notes that Earley parsing is not correct for rules involving ǫ. Later the approach
in [16] was also found to be incorrect. However, it is in principle clear that
variants of these approaches can be proved complete for arbitrary context-free
grammars. Combinator parsing and related techniques are probably folklore. An
early approach with some similarities is [14]. Versions that are clearly related to
the approach taken in this paper were popularized in [9].

The first approach to use the length of the input to force termination is [12].
The work most closely related to ours is that of Frost et al. [8, 6, 7], who limit
the depth of recursion to m∗ (1+ |s|), where m is the number of nonterminals in
the grammar and |s| is the length of the input. They leave correctness of their
approach as an open question. For example, they state: “Future work includes
proof of correctness . . . ” [7]; and “We are constructing formal correctness proofs
. . . ” [8]. A major contribution of this paper, and the key to correctness, is the
introduction of parsing context and the definition of good tree. Amazingly, the
measure function from Sect. 7 gives the same worst-case limit on the depth of
recursion as that used by Frost et al. (although typically our measure function
decreases faster because it takes the context into account), and so this work can

be taken as proof that the basic approach of Frost et al. is correct.
The mechanical verification of parsers, as here, is a relatively recent develop-

ment. Current impressive examples such as [2, 11, 3] cannot handle all context-
free grammars. Recent impressive work on verified compilation such as [13] is
complementary to the work presented here: our verified parser can extend the
guarantees of verified compilation to the front-end parsing phase.

12 Conclusion

We presented a parser generator for arbitrary context-free grammars, based on
combinator parsing. The code for a minimal version of the parser generator is
about 20 lines of OCaml. We proved that generated parsers are terminating,
sound and complete using the HOL4 theorem prover. The time complexity of
the memoized version of our algorithm is O(n5). Real-world performance com-
parisons on the grammar E -> E E E | "1" | ǫ indicate that we are faster
than the popular Happy parser generator running in GLR mode across a wide
range of inputs.

There is much scope for future work, some of which we have mentioned
previously. One option is to attempt to reduce the worst case time complexity

from O(n5). In an ideal world this could be done whilst preserving the essential
beauty and simplicity of combinator parsing; in reality, it may not be possible
to reduce the time complexity further without significantly complicating the
underlying implementation.

References

1. Happy, a parser generator for Haskell. http://www.haskell.org/happy/.
2. Aditi Barthwal and Michael Norrish. Verified, executable parsing. In Giuseppe

Castagna, editor, ESOP, volume 5502 of Lecture Notes in Computer Science, pages
160–174. Springer, 2009.

3. Nils Anders Danielsson. Total parser combinators. In Paul Hudak and Stephanie
Weirich, editors, ICFP, pages 285–296. ACM, 2010.

4. Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–
102, 1970.

5. Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time, functional pearl.
In ICFP 02: Proceedings of the seventh ACM SIGPLAN international conference

on Functional programming, volume 37/9, pages 36–47, New York, NY, USA, 2002.
ACM.

6. Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. Parser combinators
for ambiguous left-recursive grammars. In Paul Hudak and David Scott Warren,
editors, PADL, volume 4902 of Lecture Notes in Computer Science, pages 167–181.
Springer, 2008.

7. Richard A. Frost, Rahmatullah Hafiz, and Paul C. Callaghan. Modular and ef-
ficient top-down parsing for ambiguous left-recursive grammars. In IWPT ’07:

Proceedings of the 10th International Conference on Parsing Technologies, pages
109–120, Morristown, NJ, USA, 2007. Association for Computational Linguistics.

8. Rahmatullah Hafiz and Richard A. Frost. Lazy combinators for executable speci-
fications of general attribute grammars. In Manuel Carro and Ricardo Peña, ed-
itors, PADL, volume 5937 of Lecture Notes in Computer Science, pages 167–182.
Springer, 2010.

9. Graham Hutton. Higher-order functions for parsing. J. Funct. Program., 2(3):323–
343, 1992.

10. T. Kasami. An efficient recognition and syntax analysis algorithm for context-
free languages. Technical Report AFCRL-65-758, Air Force Cambridge Research
Laboratory, Bedford, Massachusetts, 1965.

11. Adam Koprowski and Henri Binsztok. TRX: A formally verified parser interpreter.
In Andrew D. Gordon, editor, ESOP, volume 6012 of Lecture Notes in Computer

Science, pages 345–365. Springer, 2010.
12. Susumu Kuno. The predictive analyzer and a path elimination technique. Com-

mun. ACM, 8(7):453–462, 1965.
13. Xavier Leroy. Formal verification of a realistic compiler. Communications of the

ACM, April 2009.
14. V. R. Pratt. Top down operator precedence. In Proceedings ACM Symposium on

Principles Prog. Languages, 1973.
15. Tom Ridge. Simple, functional, sound and complete parsing for all context-free

grammars, 2010. Unpublished draft available at http://www.cs.le.ac.uk/~tr61.
16. Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for

Practical Systems. Kluwer, Boston, 1986.

