Simple, functional, sound and complete
parsing for all context-free grammars

Tom Ridge

University of Leicester
tr61@le.ac.uk

Abstract E —> II(II E "+" E ll)ll | nqn

Parsing text to identify grammatical structure is a common task, €s- |zformally, the symboE can be replaced by the sequence con-
pecially in relation to programming languages and associated t00ISsjsting of the terminal' (", anE, the terminal"+", anotherE and
such as compilers. Parsers for context-free grammars can be iMyhe terminal) *; alternatively the symbdt can be replaced by the
plemented directly and naturally in a functional style known as terminal"1". If we view -> as a relation between lists of symbols

“‘combinator parsing”, using recursion following the structure of \ye can construct the transitive closure of therelation which we
the grammar rules. However, naive implementations fail to termi- yyjte as->+. For example

nate on left-recursive grammars, and despite extensive resdach,
only complete parsers for general context-free grammars are con-E ->+ " (" 1" "4 ngn myn
structed using other techniques such as Earley parsing. . . .

Our main contribution is to show how to construct simple, sound _ |f We concatenate the resulting terminals we get a st(ingl)
and complete parser implementations directly from grammar spec-Which is accepted by the grammar. A parser is sound if it only
ifications for all context-free grammars based on combinator pars- €c0gnizes strings accepted by the grammar. It is complete if it
ing. We first develop a solution to handle a restricted class of gram- 'écognizes all such strings. . . .
mars with left recursion based on the ideacoinmitmentsWe In combinator parsing sequencing and alternation are imple-
formalize the concepts involved in order to treat the general case, MeNtéd using the infix combinators> and |11 (higher-order
and use Konig's infinite path lemma on trees to characterize non- functions that take parsers as input and produce parsers as output).
terminating parse attempts. Unfortunately this characterization is FO examplé
not effective.An_ effective over-apprpxi_mation gxists, butthiselim- ;.. . oc E = fun i ->
inates some finite parses that a priori are valid. Fortunately these (. w(ny wx> E %> (a "+") %> E %> (a ")")
parses are redundant, and eliminating them preserves complete- I (a "1") i
ness: any input for which a parse tree can be constructed will be
parsed with our approach. We then define a parser generator based The implementation works by first consuming &' character
on our ideas and prove it correct. from the input, then calling itself recursively to parse Brthen

The focus of this work is on correctness, in particular complete- consuming a"+" character, and so on. Termination is obvious,
ness. In terms of efficiency, following [Norvig 1991] memoized because any recursive callEds given strictly less input to parse.
combinator parsing is polynomial time for non-left-recursive gram- Combinator parsing cannot be used directly if the grammar
mars. Our approach can handle arbitrary context-free grammars,contains rules such & -> E "+" E that are left recursive. A
but because we insist on completeness, some highly-ambiguousnaive implementation of this rule would attempt to parseEdy
left-recursive grammars cause our approach to return an exponenfirst expanding toE "+" E, and then recursively attempting to

tial number of non-redundant parse trees in exponential time. parse arE on the same input, leading to non-termination.
Categories and Subject Descriptors D.1.1 [Applicative (Func- Although it is highly modular, general top-down parsing
tional) Programming F.4.2 [Grammars and Other Rewriting is often ignored as it has been traditionally categorized
Systems Parsing; 1.2.7 Natural Language ProcessihigParsing as expensive, and non-terminating while processing left-
General Terms Parsing, Functional programming, Combinator recursive grammars. [Hafiz and Frost 2010]

parsing, Context-free grammar In practice alternative approaches are used. One approach is
Keywords functional, terminating, sound, complete, parsing, t0 change the implementation. Earley parsing [Earley 1970] and

context-free other approaches based on dynamic programming can be used to
implement any context-free grammar. Implementations are usually
1. Introduction complex, hard to understand, hard to modify, and hard to maintain.

o)) For example, sixteen years after Earley parsing was introduced
Parsing is central to many areas of computer science, includ- [Tomita 1986] noted that the technique was incorrect for rules
ing databases (database query languages), programming languagesntaining the epsilon or empty terminat. This problem was
(syntax), network protocols (packet formats), the internet (transfe eventually fixed in [Aycock and Horspool 2002] but the cost in
protocols and markup languages), and natural language processingterms of further implementation complexity is substantial.
Context-free grammars are typically specified using Backus-Naur
Form (BNF), an example of whichlis 2The examples in this section are essentially the same as thelQRa
amples described later, but are formally pseudocode becgusanees of
1Real BNF requires nonterminals to be written<ag. OCaml functions must start with a lowercase letter.

Another approach often combined with an alternative imple- our approach is complete, a simple corollary is tay approach
mentation is to limit the grammar, for example by ruling out left- that returns all parse trees where the maximum nesting depth of a
recursive grammars, or ambiguous grammars. Much more draco-parser for a nontermina\ is |s| 4+ 1 will be completefor arbitrary
nian restrictions are typically enforced in practice, and the resulting context-free grammar&nd this includes the recent work of Frost
grammar classes go by such names as LL, LR, LR(i), SLR, LALR. etal.). This is a minor contribution of our work.

Unfortunately the specifications of these restricted classes are often The main contribution of our work is to show how to imple-
complicated and rely on details of the underlying implementations. ment simple, terminating, sound and complete parsers for arbitrary

The current situation is that if your grammar fits into some context-free grammars using combinator parsing. Based on this we
known restricted class and there is a reasonable parser generator fodefine a parser generator for arbitrary context-free grammars and
that class (and for your desired implementation language) then im- prove it correct.
plementing a parser may be straightforward. Otherwise you must Commitment-based parsingCommitment-based parsing is sim-
typically modify your initial grammar specification so that it fits pler than the general case discussed in the rest of the paper, and has
one of these classes. Such a process is error-prone and introducesome merit as an independent implementation technique. The main
unwanted complexity into the grammar specification. If the parser reason we present it here is that the underlying intuition is the basis
computes some function of the parse tree, rather than simply recog-for the solution in the general case.
nising input, grammar modification may be inappropriate [Frost Consider the following BNF and its implementation.
and Hafiz 2006].

In practice, parser generators reject grammars with incompre- (* E => E "+" E | "1"; faulty implementation *)
hensible messages detailing some failed implementation step eg “alet rec E = fun i ->
shift-shift conflict has been detected”. The generated parsers rejec ((E *x> (a "+") *> E) ||| (a "1")) i
input with similarly mystic pronouncements. Even if the user has
been trained to accept these complications as necessary, the proce%ﬁ
of producing a parser is often a frustrating one. e

In light of these issues, the benefits of combinator parsing seem

even more appealing: the process of implementation is straightfor- . ° ; .
bp g P P g to parsing a+ from the inputafter the first recursive call t&. In

ward; the resulting implementation is closely related to the gram- ;) .
mar specification, which helps ensure soundness; and the imple-Particular, we know that the firét should not consume the entire
mentation is clean, concise, and comprehensible, which eases mod'-nfpl:]t' An obv;?vus_waydto ensure this is to g]lcve the fEs#nIy a_par}
ification and maintenance. Therefore a longstanding goal is to adapt®! he input. We introduce a parser transformer (a function from
combinator parsing to handle all context-free grammars. This has Parsers to parserspnr_last that ignores the last character of the
lead to much related work, see Sect. 12. The work most closely input when invoking the underlying parser, see Sect. 5 for details.
related to ours is that of Frost et al. [Frost and Launchbury 1989; (
Frost 1992, 1994; Frost and Hafiz 2006; Frost et al. 2007, 2008
Hafiz and Frost 2010]. As recently as [Frost and Hafiz 2006], the

approach was known to be incomplete.

The recursive call t& may be given exactly the same input as
parent, which leads to an infinite chain of recursive calls, or

stack overflow. However, when we attempt to pars& asing the

ruleE -> E "+" E clearly somethings decreasing: weommit

j E _> E Il+l| E | I|1II *)
'let rec E = fun i ->
(((ignr_last E) *x> (a "+") *x> E) ||| (a "1")) i

This parser is terminating, sound and complete for the left-
recursive gramme -> E "+" E | "1".
Analysis Rules are of the formX -> Y ... Z, where X is a
More recent work, starting from [Frost et al. 2007], tries to limit nonterminal and” . .. Z are either nonterminals or terminals. We
the recursive nesting of a parser for a nontermiato |s| 4+ 1 let Greek lettersx, 3, ... range over sequences of terminals or
when applied to an input If there arem parsers correspondingto nonterminals. For the rul¥ -> oo X 3 there are several cases:
m nonterminals in the grammar, the maximum depth of recursion
is thenm(|s| + 1), and termination is straightforward. However, ~ ® Not« ->+ "" ... "" By the time the recursive call to parse
correctness of the approach is left for future work. X is made, part of the input will have been consumed whilst
parsinga, so the recursive call will receive strictly less input
than the parent, thereby ensuring termination.

...Frost and Hafiz (2006) ... does not accommodate indi-
rect left recursion . .. [Frost et al. 2007]

Future work includes proof of correctness ...[Frost et al.

2007
W] . t- f I . f H f d o o —>+ "" . ||||’ bUt not/@ =>4 o onm Then we can
Frg;rggfg]s ructing formal correctness proofs [Hafiz an use commitment-based parsing, and wrap the parset f&r

in ignr_last as described above. The input is reduced when
This suggests that the authors do not view correctness, in partic- attempting to parse.X, in particular, the input is reduced by

ular completeness, as an immediate consequence of their approach. the time the recursive call to pargeis made.

In fact [Frost et al. 2007] seems to state explicitly that the approach o ,, _54 wn n noandf >+ "ML je X =>4 nn X

is incomplete, at least for “circular grammars”. nn . wn which is the problematic general case.

At this point no parse is possible (other than spurious parses
which could occur with circular grammars — which we want

;[\8 reje[c';[)rc.).s‘.[gt]zlgrzagg?]ar Is circular s being rewritten to for indirect recursion e -> o A 8 andA ->+ o’ X 5.
' Structure of the paper In Sect. 2 we discuss notation. In Sect. 3

However their approach actuallis complete for arbitrary we give a brief introduction to substrings, which are used exten-
context-free grammars. Given a substringhe worst that can hap- sively in the rest of the paper. In Sect. 4 we give formal defini-

Our example rule involves direct recursion (the rule f6r
involves X on the right-hand side) but the problems are similar

pen withour approach is that a parser for a nontermiXais given tions for concepts such as terminal, nonterminal, parse rule, gram-
a substring of lengths| (the initial input) and recursive calls are mar and parse tree. In Sect. 5 we give the full implementation of
then given an input oflengtls|—1, |s|—2, . . ., 0. Clearly the maxi- commitment-based parsing, which usefully introduces much of the
mum nesting for a parser for nontermidslis |s|+1, so for a gram- machinery used in later sections. Commitment-based parsing is an

mar withm nonterminals recursion is boundediy |s|+1). Since independent technique that is simpler than the general solution, so

represents a minor contribution of this paper. In Sect. 6 we exam- Note that in OCaml, infix operators are defined using prefix
ine the case of general context-free grammars. We characterize inform, where the operator is surrounded by brackets. We make
finite parse trees, define an effective approximation based on “bad” extensive use of substrings ie a tridle [, k) of a strings, with
nodes, and show that removing parse trees with bad nodes preservelow index! and high index, satisfying the invariant < h < |s|.
completeness. In Sect. 7 we briefly discuss an implementation strat-

egy based on checking for bad nodes and in Sect. 8 we give antype substring = string * int * int

implementation based on these ideas. This requires extending the

input to include a context, and wrapping potentially looping parsers 1let string (s,1,h)
in a functioncheck_and upd_ctxt. For example, the following is

the implementation of a terminating, sound and complete parser forlet [low;high;len] = [

S

the highly ambiguous grammar-> E E | "1" | " (fun (s,1,h) -> 1);
(fun (s,1,h) -> h);
let rec E = fun i -> (fun (s,1,h) -> h-1)]
check_and_upd_ctxt "E"
(E *%>E) |l a"1") |l a "™)) let full s = (s,0,String.length s)

1
let inc_low n (s,1,h) = (s,1l+n,h)
Our approach retains the simplicity and elegance of traditional 1et dec_high n (s,1,h) = (s,1,h-n)
combinator parsing whilst extending it to treat all context-free 1let inc_high n (s,1,h) (s,1,h+n)
grammars. In Sect. 9 we implement a parser generator, capable
of taking any context-free grammar and producing a terminating, let content s =
sound and complete parser for it. This allows us to state a gen- String.sub (string s) (low s) (len s)
eral correctness theorem concerning our approach. In Sect. 10 we
discuss memoization. In Sect. 11 we discuss mechanization of theDefinition 1 (contiguous, concatenate, spam pair of two sub-
implementations and proofs in a theorem prover. There is a greatstrings(s, l1, h1) and(s, l2, h2) is contiguous ifls = h4, in which
amount of related work which we discuss in Sect. 12. Finally we case the substrings can be concatenated to form the substring
draw some conclusions in Sect. 13. (s,11, h2). A sequence of substrings, lo, ho), ..., (s,ln, hn) is
Our implementation language is OCaml [Leroy et al.]. The com- contiguous iff each pair of adjacent substrings is contiguous, in
plete OCaml code can be downloaded from the author's home- which case it can be concatenated to form the subsi@ng, ..).
pagé. A sequencés, lo, ho), - - ., (s, In, hy) Of substrings spans a sub-
string ¢ iff they can be concatenated to form

2. Notation Typical parser implementations will attempt to parse the longest

Throughout we mix mathematical definitions and notation with real prefix of the input.

OCaml code excerpts formatted using typewriter font. We also use Definition 2 (contains, prefix, suffix) A substring(s, /1, h1) con-
typewriter font for concrete grammars, nonterminals and terminals. tains a substring's, l2, h2) iff 11 < lo < ha < hq. If in addition

For example, a concrete nonterminal may be writtenwhilst a lo = 11 we say thal(s, 2, ho) is a prefix of(s, l1, h1). Similarly if
variable ranging over nonterminals may be writt&n Concrete ha = h1 we say thas, l2, hs) is a suffix of(s, 11, h1).

strings are e@ello. The length of a string is |s|. Terminals are

eg"1". Nonterminals are €B. 4. Basic definitions

We write function application ag(z) or f or f;. o))
OCaml syntax should be comprehensible to anyone with a Definition 3 (symbol, terminal, nonterminal)The set of symbols
knowledge of a similar functional programming language such is the disjoint union of the set of terminals, the set of nonterminals

as SML or Haskell. Boolean conjunction &. Lists are written ~ and the set of singletons. A singleton is a set containing a single
[x;y;z] orx::y::z:: []. Anonymous functionsz . . . are writ- substring. For every terminaX there is a set of substringSx .

tenfun IX > ..fNon_—rec(;Jr?_w_e_ bindings are agt x = .. . Terminals and nonterminals are just elements of some uninter-

fenera ;ecurs"é?agggtrggp:rgi'gg?;erf erg?cr:lr?a?u:ne&];fi;st preted sets. A terminal is implemented by some terminating OCaml
un X -> ,sn

function, the details of which are mathematically irrelevant; what
matters is the set of substrings: that the implementation of ter-
minal X accepts. A singletofi(s, [,)} is used to indicate exactly
how a terminal matched a given portion of the input

For an implementation, we must pick some underlying types for
terminals and nonterminals.

or second component of a paliist .map to map a function over a
list; List. concat to form alist from a list of lists by concatenating
them together.ist . append to append two listd,ist .exists p
xs which returnstrue iff the list xs contains an element satisfy-
ing propertyp; List.filter p xs which returns the elements in
xs satisfying the property; String.length to return the length

of a string;String.sub s 1 n to return the substring of from type term = string

positionl with lengthn; s = t to return the string formed by ap- type nonterm = string

pending the strings andt. In OCaml (* this is a comment type singleton = substring

*).
type symbol = TM of term

3. Preliminaries | NT of nonterm | SN of singleton

We need an infix function composition operator. An example of a parse rule 5 -> E "+" E. The right-hand
side may list several alternativesBg-> E "+" E | "1" which

let ($) £ g x = £(g x) is equivalent to the two rules -> E "+" EandE -> "1". Infor-

mally when we talk of a rul&X -> X, ... X;, we mean a rule with
Shttp://www.cs.le.ac.uk/~tr61/parsing X on the left-hand side, anlly . . . X; as one of the alternatives.

Definition 4 (alternative, parse rule)An alternative is a list
[Xo,...,X;] of symbols such that eacki; is either a terminal
or a nonterminal. A nonterminal parse rule is a pdiX, Z) of a

nonterminalX and a list of alternative<. A terminal parse rule is
a pair (X, [{z}]]), whereX is a terminal and{x} is a singleton,
such thatz € Sx.

p € T with childreni... j, there must be a rule € G of the
form X, -> X; ... X;. For each leafz, X, must be a singleton

{(s, Lz, ha)}.

In this definition, the tre&” may be infinite. Singletons only
appear at leaves, anll,. is a singleton for all leaves. If = is
a leaf with X, = {(s,ls,hs)}, andy is the parent ofr, then

In implementations we only need nonterminal parse rules: ter- by the nature of the rules id/, X, must be a terminal with
minal parse rules are a mathematical abstraction used to model the(s, I, h.) € Sx, . Furthermore, since there are only a finite num-
behaviour of opaque terminal parsers. Note that the following type ber of nonterminal parse rules @, there are only a finite number

is imprecise as it allows singletons on the right-hand side.

type parse_rule = nonterm * ((symbol list) list)

of nonterminalsX,, that is, the range ok, restricted to nontermi-
nals, is finite.
Let s be the stringt+1. An example of a finite parse tree for

Definition 5 (grammar) A grammarG is a set of parse rules (s,0,3)is
formed from a finite set of nonterminal parse rules by adding all E
terminal parse rules.
At the implementation level there are no terminal parse rules, so
we identify a grammar with a finite set of parse rules represented E e E
as alist. J/
type grammar = parse_rule list
. ||1n 8,1,2 ||1n
Trees are used to describe successful parses. We also use trees {)}
to describe parse attempts that result in looping behaviour by a
hypothetical implementation. For this reason, our definition of tree
includes infinite trees. {(s,0,1)} {(s,2,3)}

Definition 6 (sequence, tree)A sequence is a finite list of natural In the previous example, nodesare annotated with symbols
numbers. A tred’ is a set of sequences such that any prefix of a X.. An example of an infinite parse tree for the grammar> E

sequence iff’" is also inT". E | "1" | ""is
E
E E

Although this definition is very concrete, it has the benefit of
being extremely precise. We reassure the reader that none of what
follows depends essentially on the details of this definition. In the
following, we work only with trees that are finitely branching. We

refer to sequences € T' as nodes of . The root node of" is the
empty sequencg.

Definition 7 (parent, child, descendant, ascendart)z is a se-
guencero, ..., x; inT,andy = xo,...,x:,yi+1 € T,thenxisa
parent ofy, andy is a child ofz. The transitive closure of the child

relation is called descendant. The transitive closure of the parent

relation is called ascendant.
Definition 8 (leaf). A sequence in T is a leaf iffz is not a parent.

Definition 9 (leaf order) The leaf order is simply the lexicographic

AN

Some parse trees represent completed parses.

Definition 13 (final parse tree) Given a substring;, a parse tree
(T, X) is final iff

e T is finite

order on the underlying sequences (restricted to those sequences ® If the singletons in leaf order argso}, ..., {s:} then the sub-

that are leaves). Sequences of differing lengths are compared in the
standard way: the longer sequence is first truncated to the length

of the shorter.

For two distinct leaves: andy, eitherz < y ory < z in the
leaf order.

Definition 10 (decorated tree)A decorated tree is a paiT’, f) of
a treeT and a functionf with domainT'.

Definition 11 (subtree under). Given atreél’, and anode: € T,
to form the subtre@” underz = xo, .. ., z;, first form the set of
sequences consisting:ofind all descendants af then remove the
common prefixo, . .., z; from each sequence to give the tEe.
To form a decorated subtrd@®, f©) of a decorated tre€T’, f) let
fa; =)\(y07~~.7yj)~f($0,---7xi7y07~~-7yj)

Informally, given a gramma¢z, a parse tree for some initial
input is a tree constructed according to the rule&of

Definition 12 (parse tree) Given a grammaiG and a substring
(s,1,h), aparse tree is a decorated tré&, X') consisting of a tree
T and a functionX from nodese to symbolsX .. For each parent

string sequencey, . . . , s; Spanss.

The example finite parse tree is final. Note that a final parse
tree gives precise information about how the input was parsed.
For a final parse treéT, X) and a noder € T, the subtree
(T*, X*) is also final for the substring formed from concatenating
the singletons at the leaves.

Definition 14 (parsed) Given a grammat, a substrings can be
parsed as a terminal or nontermin&l iff there is a final parse tree
(T, X) for s such thatX|; = Y ie the root of the tree is decorated
with nonterminaly”

For the grammar formed from the nonterminal rie-> E
"+" E | 1, the example finite parse tree shows that the substring
(s,0,3) can be parsed as &n

Mathematically a parse tree may be infinite, but at the imple-
mentation level, parse trees are finite.

type parse_tree = PT of symbol * (parse_tree list)

let leaf tm s = PT(TM tm, [PT(SN s,[]1)])

5. Commitment-based parsing

In Sect. 1 we introduced commitment-based parsing, which al- \ye defineSi;.» to be substrings whose content is the string
lows traditional combinator parsing to handle a wide class of left- 1;: Given the following definition, eg the terminai" would be
recursive grammars. Commitment-based parsing does not need 3mplemented aga "1") in OCamI.’

context, which makes it simpler than the general case discussed

in the next section. The central idea of commitment-based pars- (x string
ing is to wrap parsers in the parser transformgir _last, which
reduces the input when calling the underlying parser, thereby en- let n = String.length 1lit in
suring termination. The purpose of this section is to describe 1let s = substr i in
commitment-based parsing in detail, and to introduce much of the if

e (s,I',h) is a suffix of(s, 1, h)

-> parse_tree parser *)
let a 1it = fun i ->

machinery that will be used in the following sections. (n <= len s)
Traditionally a parser is a function from an input stringo && (String.sub (string s) (low s) n = 1lit)

a result, that is, a paifv, s’) of a value (here, a parse tree) and then
the remainder of the string that failed to parse. If a grammar is let (s1,1,h) = s in
ambiguous, then multiple results may be returned in a list. Later, let s2 = (s1,1,1+n) in
we refine the input type, but for the moment we identify it with let r = leaf ("\"" = 1lit = "\"") s2 in
the type of substrings. The functiossbstr andtoinput convert [(r,inc_low n s)]
from inputs to substrings and vice versa; here they are trivial. The else
function 1ift converts a function on substrings to a function on [1
inputs.

P Lemma 19. For any grammarG, the parser(a "1it") is a ter-
type input = substring minating, prefix-sound and prefix-complete parser for the terminal

I'lit".
let id = fun x -> x
let (substr,toinput,lift) = (id,id,id) Proof. Termination is clear. A final parse tré¢&, X) for the termi-

nal"1it" has the following form

type ’a parser = input -> (’a * substring) list n1it"
A basic requirement is that a parser should be sound. For the
following definition, note that a parser that returns no results is

sound, as is a parser that fails to return at all. (s,1,1)

where the content dfs, 7, 1’) is the stringlit. Assume(s, [, ')
is a prefix of (s,, k), so that(s,!’, h) represents the remainder
of (s,1, h) that is not parsed. For prefix-soundness, it is clear that
given any inpuf(s, I, h) the parser only returns final parse trees of
this form. For prefix-completeness, for all final parse trégsX)
of this form, the parser when called on indut [, k) returns (the
implementation of) T, X) paired with(s, ', h). O

Definition 15 (sound parser)Given a grammars and a substring
s, a parser is sound for terminal or nontermingl iff, if it returns,
then it returns only (implementations of) final parse tré¢&s.X)
with X[] =Y.

Ideally a parser should also be complete, that is, if there is a
final parse tree for a substring then the parser should return at
least one such parse tree.

Prefix-soundness and prefix-completeness are motivated by im-
plementation concerns, and detract from the mathematical presen-
tation. In what follows, we informally use the terms soundness and
completeness to mean prefix-soundness and prefix-completeness,
but we elide details of the proofs that manage the unmemorable
Sbook-keeping involved in dealing with prefixes.

We need two combinators, representing sequencing (parser 1
en parser 2) and alternation (parser 1 or parser 2, equivalently,
several rules for the same nonterminal).

Definition 16 (complete parser)Given a grammaiG and a sub-
string s, a parser is complete for a terminal or nontermirtaliff,

if s can be parsed as ¥, then the parser returns at least one (im-
plementation of a) final parse tré@’, X) for s with Xj = Y.

Note that completeness does not require that all final parse tree
for s are returned — there may be an infinite number of them. Note
also that the definitions of soundness and completeness are no{h
convenient for real implementations which typically return pairs
of a final parse trees for arefix of the initial input, together with
the remainder of the input that was not parsed. (* ’a parser -> ’b parser -> (’a * ’b) parser *)
let (**>) pl p2 = fun s >

let f (el,sl) =

List.map (fun (e2,s2) -> ((el,e2),s2)) (p2 si1)
in

(List.concat $ (List.map f) $ pl) s

Definition 17 (prefix-sound parser)Given a grammarG and a
substring(s, {, h), a parser is prefix-sound for terminal or nonter-
minal Y iff it returns only pairs((T, X), (s,1’, h))) such that

e (T, X) is afinal parse tree for the prefis, I,1') of (s, 1, h)
* Xp=Y

e (s,I',h) is a suffix of(s, I, h)

Definition 18 (prefix-complete parser)Given a grammaiG and

a substring (s,l,h), a parser is prefix-complete for a termi-
nal or nonterminalY iff, for any prefix(s,1,1’) of (s,1, h) that
can be parsed as &, the parser returns at least one pair
(T, X), (s,I', h)) such that

e (T, X) is afinal parse tree for the prefis, 1,1') of (s, 1, h)
L4 X[] =Y

(* ’a parser -> ’a parser -> ’a parser *)
let (Il1) pl p2 = fun s -> List.append (pl s) (p2 s)

Our example BNF directly translates to the following parser.

(* E —> Il(ll E "+" E n)u |
let rec pE = fun i ->
let pl =
(a "(") **> pE **> (a "+") *x> pE **> (a ")")
in

I|1II *)

let £ fun (bra, (el, (plus, (e2,ket)))) ->
PT(NT "E", [bra;el;plus;e2;ket])
in

((p1 >> £) ||

(a Illll)) 1

Note that thex*> operator associates to the right. The previous
definition makes use of the> value transformer, which takes a
parserp and a functiorf and applie< to the values returned fyy

(* ’a parser -> (a -> ’b) -> ’b parser *)
let (>>) p £
(List.map (fun (e,s) > (f e, 8))) $ p

how any depth-first parser might fail to terminate. We use this the-
orem to derive an effective test for potential non-termination. In the
next section we describe how this can form the basis of sound and
complete parsers for arbitrary context-free grammars.

We first define a matched parse tree, which is a parse tree
with additional information at each node about what substring was
parsed by the subtree at that node.

Definition 21 (matched parse treep matched parse tree is a triple
(T, X, S) where(T, X) is a parse tree, andT’, S) is a decorated
tree such that

o for every leafz with singletonX, = {(s,l,hs)} we have

Commitment-based parsing uses a parser transformer that drops S, = (s, 1z, hs)

the last character of the input before invoking the underlying parser,

then adds that character back when returning the results.

(* ’a parser -> ’a parser *)

let ignr_last p = fun i ->
if len (substr i) = O then [] else
let inc_high (e,s) = (e,inc_high 1 s) in
((List.map inc_high) $ p $§ (lift (dec_high 1))) i

The example commitment-based parser from Sect. 1 is then:

(* E -> E ngn E | ||1|| *)
let rec pE = fun i ->
let pl = (ignr_last pE) *x> (a "+") *x> pE in
let f fun (el, (plus,e2)) ->
PT(NT "E", [el;plus;e2])
in
((p1 > £) ||

(a "y ||)) i
For which we have the following

Lemma 20. The example parser is a terminating, sound and com-
plete parser for the gramma -> E "+" E | "1".

Proof. For termination, calls tda "1") and(a "+") are termi-
nating by Lemma 19, and recursive callspgb are given strictly
smaller substrings than the parent.

For soundness, when given a substrings an argument, the
parser returns only terminal parse treesdpby induction on the
length of the substring, again using Lemma 19 for the base cases.

Completeness is immediate from the stronger property that,
given a substring, the example parser returns every possible final
parse tre€T’, X) for s, which is proved by induction ofT’, X),
again using Lemma 19 for the base cases. O

We end this section by generalizing the two combinators from
pairs of parsers to lists of parsers.

let always = fun i -> [([],substr i)]

let never fun i > []

let rec then_list ps

| [1 -> always

| pi:ps => (p **> (then_list ps))
>> (fun (x,xs) -> x::xs8)

match ps with

let rec or_list ps
| [0 -> never
| p::ps => (p |l (or_list ps))

match ps with

6. The general case

The central result of this section is Thm. 22 which gives a charac-
terization of infinite parse trees. Informally this theorem describes

e for every parenp with childreni. .. j, the substrings;S;
are contiguous, and their concatenation givgs

Theorem 22 (infinite-characterization) For all infinite matched
parse trees(T, X, S), there exists a natural numbér, and an
infinite branchzo, x1, . . ., zk, . . . Starting at the root such that the
sequence, , Su, ., - - - IS constant.

Proof. The infinite parse(T, X) is finitely branching since the
right-hand side of each rule i@ is finite, so by Konig's lemma
there exists an infinite branch of nodesdecorated with substrings

Sz;, starting from the root. The low index of each substring in-
creases along this branch, and is bounded above. The high index of
each substring decreases along the branch, and is bounded below.
Thus, eventually the low index and high index of each substring
is constant, say, from;. Later nodes are decorated with the same
substring(s, I, h). O

The following shows an infinite path in an infinite matched
parse tree for the grammar-> E E | "1" | "". Nodesr have
been annotated with paifs,, S.).

(E, (s,0,1))

(B, (s,

(&, (s,

Corollary 23. For all infinite matched parse tre€q’, X, S), there
exists an infinite branchy, z1, . . . starting at the root such tha®
and X are constant on some infinite subsequenceyok,

Proof. From the previous theorem, there exigtsuch thatS is

constant on the sequeneg, z+1, Clearly for anyz in this se-

quence X, is a nonterminal. Only finitely many nonterminals can

appear in a parse tree, so some nonterminal must appear infinitely
O

often in the sequenc¥., , Xz, ,,- .

As a further corollary, if there is only one infinite branch in a
parse tree then indeed we must have a thile->+ "" o
X " This confirms the analysis from Sect. 1. It also
strongly suggests the following definition.

Definition 24 (bad node, bad descendan@iven a matched parse
tree (T, X, S), a bad node is a node € T, with a descendant
2’ € T, such thatX,, = X, andS,, = S,. In this case, we say
thatz’ is a bad descendant.

(E, (5,0,1)) A consequence of this theorem is that when reasoning about
completeness, we need only consider final matched parse trees with
no bad nodes.

bad node (E, (s,0,0)) 7. Parsing strategy

Given the preceding results, the obvious strategy is to check for
bad nodes while parsing. When attempting to parse some substring
bad descendant (E, (s,0,0)) (s,1,h) as a nonterminak,, the information(X, (s, [, h)) should

be recorded in a context before making recursive calls to other
parsers. A recursive call to parse some input!’, »’) as a non-
terminal X’ should first examine the context.(X’, (s',1’, 1)) is
already in the context, then some ascendant call is attempting to
parse the same input as the same nonterminal. A successful parse
Lemma 25 (infinite-bad) Every infinite matched parse tree con- Of the entire substring, followed by a successful parse of the same
tains infinitely many bad nodes. substring by the ascendant, results in a bad node. To avoid a bad

node, the parse attempt should be abandoned.

Of course, some perfectly valid final matched parse trees may The above reasoning assumes we are trying to parse an entire
contain bad nodes as well. For examples i a string of length substring. However, with left-to-right parsing, it is more common
one containing, thenthe rul€ -> E | "1" clearly givesriseto to attempt to parse some prefix of the substring. The presence of
an infinite number of final parse trees containing bad nodes. (X, (s,1, h)) in the context is then taken to mean that some ascen-

(E, (s,0,1)) dant is attempting to parse a prefix(@f /,) as a nonterminak’.
A successful parse of a prefix ¢§,1, k) by the descendant does
not necessarily result in a bad node, because the ascendant might
parse a strictly longer prefix. However, we should avoid a success-
(E, (s,0,1)) (E, (s,0,1)) ful parse of the entire substring, since in that case a successfal pars
by the ascendaill result in a bad node. Thus, if we ignore the
last character, and attempt to pa¢sel, h — 1) we know

(E, (5,0,1)) (E,(s,0,1)) e o that we are omitting only parse trees with bad nodes

¢ that we ensure termination, since recursive calls to parsee
given strictly smaller substrings

("1", (s,0,1)) ("1",(s,0,1)) .
8. Implementation

We illustrate the implementation strategy outlined in the previous
({(s,0,1)}, (s,0,1)) ({(s,0, 1)}, (5,0,1)) section. We introduce a context representing the parent recursive
calls. For each ascendant, we record the substring given as input,
Lemma 26 (exist-final-bad) There exist final matched parse trees and what nonterminal was being parsed.
with bad nodes.

type context = (nonterm * substring) list
However, final matched parse trees with bad nodes can be .) _ .
pruned from a set of final matched parse trees without affecting The input type is now a pair of a context and a substring.

completeness. We now make precise exactly what we are giving .)
up. type input = context * substring

Lemma 27 (bad-node-removal)For each final matched parse tree let substr (c,s) = s
(T, X, S) containing bad nodes, there is another final matched let toinput s = ([],s)
parse tregT", X', S’) containing strictly less bad nodes such that 1et 1ift f (c,s) = (c,f s)
X[l] = X[] andS’[] = S[].
type ’a parser = input -> (’a * substring) list

Proof. A bad nodez, with bad descendant, can be transformed The remainder of the code is unchanged, except that we need to
to remove the bad node: just replace the subifiewvith the subtree modify the **> combinator, to pass the context to the subparsers.

T*', and adjustY and$ in the obvious way. This does not affect ~Note that the context is the same whept is invoked as whep2
the value ofS and X atz, nor at ascendants ef In particular,X is invoked.
O

andSy are preserved.
. P (* ’a parser -> ’b parser -> (’a * ’b) parser *)

let (**>) pl p2 = fun (c,s) ->
Clearly we can repeat this process to eliminate all bad nodes let f (el,sl1) =
from a final matched parse tree. Even though avoiding bad nodes List.map (fun (e2,s2) -> ((el,e2),s2)) (p2 (c,s1))

eliminates some parse trees, it still preserves completeness. in
) (List.concat $ (List.map f) $ pl) (c,s)
Theorem 28 (no-bad-complete) If a substrings can be parsed

as a nonterminalX by a final matched parse tree, then it can be Following the strategy of the previous section, we define a
parsed as anX by a final matched parse tree containing no bad parametrised parser transformer to update the context. The extra
nodes. parameter records the nonterminal that is being parsed.

(* nonterm -> ’a parser -> ’a parser *) let parse_while pred = fun i ->
let update_ctxt nt p = fun (c,s) -> p ((nt,s)::c,s) let s = substr i in
if len s = 0 then [] else

As well as updating the context, we need to check whetherany 1et rec f = fun n —>
ascendant call is attempting to parse the same substringasthesame if n = len s then len s else
nonterminal, in which case we should trim the input by ignoring the let ¢ = String.sub (string s) ((low s)+n) 1 in
last character in the substring when calling the underlying parser. if pred c then f (n+1) else n
in
let n = f 0 in
let r (string s, low s, (low s)+n) in
[(r,inc_low n s)]

(* nonterm -> ’a parser -> ’a parser *)
let check_and_upd_ctxt nt p = fun (c,s) ->
let should_trim = List.exists ((=) (nt,s)) c in
if should_trim && (len s = 0) then
(]
else if should_trim then
(ignr_last (update_ctxt nt p)) (c,s)
else
(update_ctxt nt p) (c,s)

let not_epsilon p = fun i ->
List.filter (fun (v,_) -> not (len v = 0)) (p i)

let parse_AZS =

let pred c =
In general, to avoid non-termination when parsing a nonter- (Stringtcompare "A" ¢ <= 0)
minal X, simply wrap the body of the parser fof in a call to ~ && (String.compare c "Z" <= 0)
check_and_upd_ctxt. For example, the following is a terminat- in

ing, sound and complete parser for the highly ambiguous grammar not_epsilon (parse_while pred)
E -> E E I Il1|| | ||||.

let rec pE = fun i -> check_and_upd_ctxt "E" Figure 1. Implementation of terminal parseazs?

(((pE **> pE) >> (fun (s,t) -> PT(NT "E",[s;t])))

[Ca "1 the example parser. The following is immediate by induction on
[(a "")) T: for all finite matched parse tre€g’, X, S) and all contexts:
i that admit(7', X, S), if Sj = (s,I,h) then the example parser
when called with inputc, (s, , h)) returns (the implementation of)

When attempting to prove correctness and in particular com-
pleteness, we need to show that a parser will produce some given
parse tree. Whether it will or not depends on the context. The fol- Note that if the grammar contains nonterminals, and the

lowing definition characterizes those parse trees that may be re-jnjia| substring is(s, 0, |s|), then the empty context has measure
turned by a parser when supplied with a given context. m(|s| + 1). T

Definition 29 (admits) Let (7, X, S) be a finite matched parse
tree. LetSy = (s,l, h) be the substring matched by the root. A 9, A parser generator

contextc admits(7, X, S) iff . . .
In this section we use our approach to implement a parser generator,
e Ascendants are attempting to parse longer substrings ie if which takes an arbitrary context-free grammar and produces a

(T, X).

(Xi, (s,1i,hs)) € cthen(s, 1, h) is contained ir(s, I;, h;). terminating, sound and complete parser for that grammar. This
e The substrings, [, h) matched by the root is not bad ie it is not allows us to state a general theorem concerning the correctness of
the case that Xy, (s,, h)) € c. our approach.

« Let ¢ be the extension of by the pair (Xp, (s, 1, k). If z; The following is a synth for BNF. We have adopted two fea-
is a child of the root ther’ must admit the decorated subtree Ures frqm Extended BNF: nontermlnals do not have to be writ-
(T, X%, §%). ten w_|th_|n angle_d brackets, and arb_ltrary terminals can be writ-

ten within question marks. The terminals? accepts non-empty
Note that the initial empty context admits all finite parse trees strings of whitespac&€notdquote? (resp.?notsquote?) accepts
with no bad nodes. strings of characters not containing a double (resp. single) quote
character?AZS? accepts non-empty strings of capital letters, and

Lemma 30. The implementation of the example parser is termi- 7azAZs? accepts non-empty strings of letters

nating, sound and complete for the gramngar> E E | "1" |
" RULES -> RULE | RULE ?ws? RULES
RULE -> SYM ?ws? "->" ?ws? SYMSLIST

PrOOf. For termination, |t Sufﬁces tO deﬁne a measure that de' SYMSLIST -> SYMS I SYMS ?2ws? " I " ?wys? SYMSLIST

creases with each recursive call. Suppose the finite set of nonter-gyys —5 gyy | SYM 7ws? SYMS

minals in the grammar iXo, ..., X;}. If the inputis(c, (s, {, h)) SYM -> *"’ ?notdquote? ’"’ | "’" ?notsquote? "’"

then for eachX; the context: contains a paif X, (s, l;, hi)) such | ?AZS? | "?" ?azAZs? "7"

that the lengthn; = h, — [, is minimal (if X; does not appear in

the context, taken; = |s| + 1). The measur&;m; decreases on The implementation of a parser for this grammar is direct. The

each recursive call. most complex parser is the one ferM, see Fig. 2. This uses
For soundness, from Lemma 19 the base paréers") and terminal parsers such @4zS? whose implementation is given in

(a "1") are sound. From termination, we induct on the length Fig. 1. The top-level parser f&ULES returns a list of rules. To turn
of execution to show that the example parser is sound, noting thatthe list of rules into a parser, we use the parser generator in Fig. 3.
check_and upd_ctxt "E" p only removes parse trees that might The parser generatarules_to_parser is parametrised by
be returned by the underlying parger a functiontm_to_p which converts terminals such a4zsS? to

For completeness, from Theorem 28 it suffices to show that parsers such gamrse_AZS. The arguments is a grammar (a list of
every finite matched parse tree with no bad nodes is returned byrules), and the argument identifies which nonterminal the parser

let parse_SYM = fun i ->
((((a "\"") **> parse_notdquote **> (a "\"")) >> (fun

11
1l (parse_AZS >> (fun s -> NT (content s)))
11

1

(((a "?") **> parse_azAZs **> (a "?")) >> (fun (_,

(_,(s,.)) => T™M("\"" =~ (content s) ~ "\"")))

(((a "’") **x> parse_notsquote **> (a "’")) >> (fun (_,(s,_)) -> TM("’" ~ (content s) ~ "’")))

(s,)) => TM("?" ~ (content s) ~ "?"))))

Figure 2. A SYM parser

(x (term -> parse_tree parser) -> grammar -> nonterm ->
let rec rules_to_parser tm_to_p rs nt = fun i ->
let rules = List.filter (fun (a,b) -> a = nt) rs in
let rhss = List.map snd rules in
let altsl = List.concat rhss in
let sym_to_p sym =
match sym with
| TM 1lit -> tm_to_p 1lit
| NT nt -> rules_to_parser tm_to_p rs nt

parse_tree parser x)

(*
(*
(*
(*

rules for nt *)

right-hand sides of rules *)
alternatives are lists of symbols *)
transform a symbol to a parser *)

(*
(*

base case *)
recursive case *)

| SN _ -> never (* impossible, no singleton in rhs *)
in
let alts2 = List.map (List.map sym_to_p) altsl in (* alternatives are now lists of parsers *)
let g ps = then_list ps >> (fun xs -> PT(NT nt,xs)) in (* transform an alternative to a parser *)
let alts3 = List.map g alts2 in (* alternatives are now parsers *)

let p = or_list alts3 in
check_and_upd_ctxt nt p i

(*
(*

a single parser for all alternatives *)
apply parser to input *)

Figure 3. A parser generator

is for. The code gathers a list of alternatives from the right-hand
sides of rules fomt. Each alternative is a list of terminals and

Even if we insist on completeness, we still want our parsers to
be as efficient as possible. An obvious way to increase efficiency

nonterminals. Nonterminals are transformed to parsers by calling of combinator parsers is to use memoization. Following [Norvig

rules_to_parser recursively. Terminals are transformed to basic
parsers viam_to_p. The list of alternatives is then transformed to
a single parser using the combinateten _1list andor_list. Fi-
nally, to avoid non-termination, the result parser is wrapped in a
call to check_and_upd_ctxt.

Theorem 31 (parser-generator-correct)Given a total mapping
tm_to_p such thatm_to_p X is a terminating, sound and complete
parser for all terminalsX, and a grammaiG formed from a set
of nonterminal parse ruless, then for all nonterminalait, the
parser generatotrules_to_parser produces a sound, complete,
and terminating parser forit.

Proof. The proof of correctness for an arbitrary gramndarand
arbitrary nonterminatt is a direct generalization of the correctness
proof for the particular grammar and particular nonterminal from
Lemma 30. For example, for termination we show simultaneously
that the parsers for each nonterminal are terminating on input
(¢, (s,1, h)) using exactly the same measure from Lemma 301

1991] memoized combinator parsing is polynomial time for non-
left-recursive grammars. In the presence of a context, efficient
memoization is not straightforward, so here we briefly outline the
issues.

Given a functionf taking a single argument and to a result
f«=, memoization involves storing the pdir, f,) in a lookup table
when f first returns, and on subsequent invocationsfain the
same argument, returning the resulf,. without actually executing

I

A parserp is a function which takes inputs as arguments. Here,
an input is a pairc, s) of a contextc and a substring. Naively
adopting memoization is inefficient, because the contéstvery
redundant: there are many contextsvhich are different fron,
but for which a parser, when called with the pédf, s) will give
the same result as when called with the pairs): ¢ andc’ are
equivalent as far ag is concerned. If we fail to take this into
account, then we will compute(c, s) andp (c’, s) (and there may
be many sucl’) whereas we need only computéc, s).

The most obvious source of redundancy is that contexts are
semantically sets, but are implemented as lists. Thusg, i§ a

Of course, the parser generator can accept its own grammar agpermutation ofc, thenc’ is equivalent toc. A typical fix is to

input.

10. Memoization

The main focus of this paper is on correctness, in particular com-

ensure that there is only one way to represent contexts that are
permutations of each other eg by sorting contexts lexicographically
on the first component, and by substring length on the second (the
substrings are nested, so this is indeed a total order).

When a parser for nontermin&f is given a substrings, [, h)

pleteness. Completeness and efficiency are hard to reconcile. Ouiang a context: as argument, then the context contains pairs of a
parsers are complete in the sense that they return all final parse treegarminal X; and a substrings, ;,). Itis clear that any ascendant

with no bad nodes. Some highly-ambiguous left-recursive gram-

must be parsing a substring that contains the substring currently

mars generate an exponential number of such parse trees. If W&eing considered. Moreover, the only items in the context that
enforce completeness, we seemingly must accept that our parserggfect the current call are those such thiath;) = (I, h). Thus,
take an exponential amount of time. Of course, many grammars doo contextse andc’ which agree on the nonterminal; in the

not generate exponentially many non-redundant parse trees.

context with(l;, h;) = (I, h) are equivalent. The obvious fix when Combinator parsing and related techniques are probably folk-
memoizing a function call with context as an argument is to lore. An early approach with some similarities is [Pratt 1973]. Ver-
discard all those terminal&; € c where(l;, h;) # (I, h). sions that are clearly related to the approach taken in this paper
Memoization can dramatically improve parsing performance, were popularized in [Hutton 1992; Wadler 1985].
especially for highly ambiguous grammars. However, existing ar- Ambiguous grammars can give rise to an infinite number of
guments about the efficiency of memoization for combinator pars- parse trees for a given input. Parsers that return a list of parse trees
ing [Norvig 1991] cannot be applied directly. The problem lies with must therefore omit some. Our approach avoids “bad” nodes, which
the input component which is a substring rather than the usual indirectly forces termination, but most other approaches attempt to
string. Traditionally parsers try to parse prefixes of some suffix bound the recursion directly, based on the length of the input string.
of the original inputs,. Memoization ensures that the parser will The first approach to use the length of the input to force termination
only ever be called once for a given suffixequivalently, the parser is [Kuno 1965]; the focus is on implementation and efficiency, and
will only ever be called once to parse from positiaon the original completeness is not addressed. Similar current work by Frost et al.,
string so. With our approach, even using memoization, the parser which is the most closely related to our own, was discussed in Sect.
may be called many timés parse a substring starting at position 1

since we do not try to parse the rest of the original inputout the [Norvig 1991] shows that polynomial time complexity can be
rest of the substringso, 7, j), and;j can take many values. Thisis achieved in mutually-recursive top-down parsing by using memo-
the major source of inefficiency with our approach. ization. Unfortunately his argument “assumes that there are no left-
recursive rules”. This restriction is lifted in [Johnson 1995]. The
11. Mechanization in a theorem prover costis a much more complicated implementation via continuations,

o o A and it is not clear that this preserves polynomial time complexity,

Mechanization of definitions and proofs in a theorem prover can or correctness when combined with memoization.
provide strong guarantees of correctness that surpass whatiis poss An interesting recent development is the formal verification of
ble with informal mathematics. In this section we give a brief guide parsers. Current examples such as [Barthwal and Norrish 2009;
to mechanizing the results of the preceding sections. Koprowski and Binsztok 2010] do not use combinator parsing, and

The easiest approach to mechanizing these results is to rephras@annot handle all context-free grammars.
the OCaml code in the internal programming language of a theo-
rem prover such as Coq [The Coq Team], Isabelle [Paulson et al.]
or Hol [Norrish et al.]. The OCaml code is simply-typed and purely i
functional and can therefore be transcribed directly into these theo- 13. Conclusion)
rem provers. An alternative would be to mechanize the operational We presented a parser generator that takes an arbitrary grammar as
semantics of OCaml and prove that the OCaml implementation is &n argument and produces a parser for the grammar as a result. The
correct. This provides little further assurance but is significantly result parser is terminating, sound and complete for the grammar.
more difficult. In addition, we noted that any approach that, given inpuéeturns

The top-level goal should be to prove a mechanized version of all parse trees where the maximum nesting depth of a parser for a
Thm. 31. This theorem only requires finite parse trees and the only NonterminalX is |s| + 1 will be complete forarbitrary context-free
results needed from Sect. 6 are those concerning bad nodes. In pargrammars This gives a correctness proof for the approach of [Frost
ticular, the infinite characterization of Thm. 22 which involves a et al. 2007, 2008; Hafiz and Frost 2010]. . .
detour via Konig’s lemma does not need to be mechanized. Work- ~ Our proofs use informal mathematics. Following Sect. 11 it
ing with finite parse trees makes the mechanization significantly should be straightforward to mechanize the proofs in a theorem
easier. For example, the matched parse trees of Defn. 21 can be deProver such as Hol [Norrish et al.], Isabelle [Paulson et al.] or Coq

fined as afunctionfrom parse trees to substrings using primitive [The Coq Team]. .
recursion on the structure of the tree. Existing formalisms, such as BNF, deal only with grammar

rules. Real implementations typically also deal with “semantic ac-
tions”, that is, what to do with the results of a parse. We use very
12. Related work basic actions since our parsers produce only parse trees. It may
A large amount of valuable research has been done in the area obe worth formalizing the notion of semantic action, and extend-
parsing. We do not aim to survey the entire field, but instead aim ing BNF to take actions into account. The paper [Koprowski and
to give complete references to work that is most directly related to Binsztok 2010] does this for parsing expression grammars, by sim-
our own. ply allowing an arbitrary Coq function as part of the syntax of the
Context-free grammars were first identified in [Chomsky 1956]. grammar. However, to be generally useful, some particular syntax
Context-free grammars enforce block structure. Block-structured for actions should be defined.
programming was introduced by the ALGOL programming lan- The focus of our work is on correctness, and we believe our
guage [Naur et al. 1960], two of the designers of which gave their approach inherits all the benefits of combinator parsing. For prac-
names to the Backus-Naur Form, a formalism for defining context- tical applications, however, efficiency is often the overriding con-
free grammars. cern. We hope that alternative implementation strategies based on
The most famous parser generator is Yacc [Johnson 1975], butour ideas can be made competitive with the most efficient alterna-
it cannot handle arbitrary context-free grammars. The first parser tives, such as Packrat parsing [Ford 2002], at least when applied
generators that can handle arbitrary context-free grammars areto the same restricted grammar classes that these alternatives tar-
based on dynamic programming. Examples include CYK parsing get. We leave alternative implementation strategies, and efficient
[Kasami 1965] and Earley parsing [Earley 1970]. In these early implementation for future work.
works, the emphasis is on implementation concerns, and in partic- Parsing and pretty-printing are related activities. Future work
ular completeness is often not clear. For example [Tomita 1986] should aim to produce a companion pretty-printer for a given
notes that Earley parsing is not complete for rules involving the parser, such that pretty-printing followed by parsing is the iden-
empty string terminal'" (also known as epsilon). However, it is tity function. To be practically useful, a pretty-printer should try to
in principle clear that variants of these approaches can be proven minimize the amount of redundant information such as superfluous
complete for arbitrary context-free grammars. brackets.

The main motivation for this work was to produce simple,

X. Leroy etal. OCamlhttp://caml.inria.fr/.

sound and complete parsers for all context-free grammars basedb. Naur, J. W. Backus, et al. Report on the algorithmic langusigGOL

on combinator parsing. We feel the parser generator is optimal

60. Communications of the ACN8(5):299-314, May 1960.

in terms of clarity and elegance. We would be very pleased if \ norrish et al. The HOL4 theorem proverstp: //hol . sourceforge .

these techniques were taken up and used in real applications. In
particular, we have no insight as to whether the efficiency problems
outlined in Sect. 10 are a problem in practice, and we therefore

welcome feedback on these issues.

References

. Aycock and R. N. Horspool. Practical earley parsi@gmput. J.45(6):
620-630, 2002.

A. Barthwal and M. Norrish. Verified, executable parsing@nCastagna,
editor,ESOR volume 5502 of ecture Notes in Computer Scienpages
160-174. Springer, 2009. ISBN 978-3-642-00589-3.

N. Chomsky. Three models for the description of languatiRE Trans.
Info. Theory 1:113-124, 1956.

J. Earley. An efficient context-free parsing algorith@ommun. ACM13
(2):94-102, 1970. ISSN 0001-0782. doi: http://doi.acmXdL145/
362007.362035.

B. Ford. Packrat parsing: simple, powerful, lazy, linear tifuectional
pearl. InICFP 02: Proceedings of the seventh ACM SIGPLAN inter-
national conference on Functional programmjnglume 37/9, pages
36-47, New York, NY, USA, 2002. ACM. doi: 10.1145/583852.
581483. URLhttp://pdos.csail.mit.edu/~baford/packrat/
icfp02/packrat-icfp02.pdf.

R. Frost and J. Launchbury. Constructing natural languatgepreters in
a lazy functional languageComput. J. 32(2):108-121, 1989. ISSN
0010-4620. doi: http://dx.doi.org/10.1093/comjnl/3208.

R. A. Frost. Constructing programs as executable attribudéenmars.
Comput. J.35(4):376-389, 1992.

R. A. Frost. Using memoization to achieve polynomial complexity
purely functional executable specifications of non-detaistic top-
down parsersSIGPLAN Notices29(4):23-30, 1994.

R. A. Frost and R. Hafiz. A new top-down parsing algorithm tocamo-
date ambiguity and left recursion in polynomial tinB#GPLAN Notices
41(5):46-54, 2006.

R. A. Frost, R. Hafiz, and P. C. Callaghan. Modular and effictep-
down parsing for ambiguous left-recursive grammarsW#®T '07: Pro-
ceedings of the 10th International Conference on Parsirgpfielogies
pages 109-120, Morristown, NJ, USA, 2007. Association fomPuta-
tional Linguistics. ISBN 978-1-932432-90-9.

R. A. Frost, R. Hafiz, and P. Callaghan. Parser combinatorarfdriguous
left-recursive grammars. In P. Hudak and D. S. Warren, ediRABL,
volume 4902 ofLecture Notes in Computer Sciengages 167-181.
Springer, 2008. ISBN 978-3-540-77441-9.

R. Hafiz and R. A. Frost. Lazy combinators for executable $jpations
of general attribute grammars. In M. Carro and Ri&eeditorsPADL,
volume 5937 ofLecture Notes in Computer Sciengmages 167-182.
Springer, 2010. ISBN 978-3-642-11502-8.

G. Hutton. Higher-order functions for parsing. Funct. Program.2(3):
323-343, 1992.

M. Johnson. Memoization in top-down parsif@pmputational Linguistics
21(3):405-417, 1995.

S. C. Johnson. Yacc: Yet another compiler compiler. Comput&mSe
Technical Report #32, Bell Laboratories, Murray Hill, N9;75.

T. Kasami. An efficient recognition and syntax analysis dthar for
context-free languages. Technical Report AFCRL-65-758,Farce
Cambridge Research Laboratory, Bedford, Massachuse@s, 19

A. Koprowski and H. Binsztok. TRX: A formally verified parsentér-
preter. In A. D. Gordon, editoEESOR volume 6012 of_ecture Notes
in Computer Scien¢g@ages 345-365. Springer, 2010. ISBN 978-3-642-
11956-9.

S. Kuno. The predictive analyzer and a path elimination teglen Com-
mun. ACM 8(7):453—-462, 1965. ISSN 0001-0782. doi: http://doi.acm.
0rg/10.1145/364995.365689.

(&

net/.

P. Norvig. Techniques for automatic memoization with appiicet to
context-free parsingomput. Linguist.17(1):91-98, 1991. ISSN 0891-
2017.

L. Paulson, T. Nipkow, and M. Wenzel. The Isabelle distrifaut http:
//www.cl.cam.ac.uk/Research/HVG/Isabelle.

V. R. Pratt. Top down operator precedence.Pmceedings ACM Sympo-
sium on Principles Prog. Languagekd73.
The Coq Team. The Coq Theorem Prouettp://coq.inria.fr/.

M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for
Practical SystemsKluwer, Boston, 1986.

P. Wadler. How to replace failure by a list of successes: A owfor ex-
ception handling, backtracking, and pattern matching iy fanctional
languages. IFPCA pages 113-128, 1985.

