
Simple, functional, sound and complete
parsing for all context-free grammars

Tom Ridge
University of Leicester

tr61@le.ac.uk

Abstract
Parsing text to identify grammatical structure is a common task, es-
pecially in relation to programming languages and associated tools
such as compilers. Parsers for context-free grammars can be im-
plemented directly and naturally in a functional style known as
“combinator parsing”, using recursion following the structure of
the grammar rules. However, naive implementations fail to termi-
nate on left-recursive grammars, and despite extensive research,the
only complete parsers for general context-free grammars are con-
structed using other techniques such as Earley parsing.

Our main contribution is to show how to construct simple, sound
and complete parser implementations directly from grammar spec-
ifications for all context-free grammars based on combinator pars-
ing. We first develop a solution to handle a restricted class of gram-
mars with left recursion based on the idea ofcommitments. We
formalize the concepts involved in order to treat the general case,
and use K̈onig’s infinite path lemma on trees to characterize non-
terminating parse attempts. Unfortunately this characterization is
not effective. An effective over-approximation exists, but this elim-
inates some finite parses that a priori are valid. Fortunately these
parses are redundant, and eliminating them preserves complete-
ness: any input for which a parse tree can be constructed will be
parsed with our approach. We then define a parser generator based
on our ideas and prove it correct.

The focus of this work is on correctness, in particular complete-
ness. In terms of efficiency, following [Norvig 1991] memoized
combinator parsing is polynomial time for non-left-recursive gram-
mars. Our approach can handle arbitrary context-free grammars,
but because we insist on completeness, some highly-ambiguous
left-recursive grammars cause our approach to return an exponen-
tial number of non-redundant parse trees in exponential time.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; F.4.2 [Grammars and Other Rewriting
Systems]: Parsing; I.2.7 [Natural Language Processing]: Parsing

General Terms Parsing, Functional programming, Combinator
parsing, Context-free grammar

Keywords functional, terminating, sound, complete, parsing,
context-free

1. Introduction
Parsing is central to many areas of computer science, includ-
ing databases (database query languages), programming languages
(syntax), network protocols (packet formats), the internet (transfer
protocols and markup languages), and natural language processing.
Context-free grammars are typically specified using Backus-Naur
Form (BNF), an example of which is1

1 Real BNF requires nonterminals to be written eg<E>.

E -> "(" E "+" E ")" | "1"

Informally, the symbolE can be replaced by the sequence con-
sisting of the terminal"(", anE, the terminal"+", anotherE and
the terminal")"; alternatively the symbolE can be replaced by the
terminal"1". If we view -> as a relation between lists of symbols
we can construct the transitive closure of the-> relation which we
write as->+. For example

E ->+ "(" "1" "+" "1" ")"

If we concatenate the resulting terminals we get a string(1+1)
which is accepted by the grammar. A parser is sound if it only
recognizes strings accepted by the grammar. It is complete if it
recognizes all such strings.

In combinator parsing sequencing and alternation are imple-
mented using the infix combinators**> and ||| (higher-order
functions that take parsers as input and produce parsers as output).
For example2

let rec E = fun i ->
((a "(") **> E **> (a "+") **> E **> (a ")")
||| (a "1")) i

The implementation works by first consuming a"(" character
from the input, then calling itself recursively to parse anE, then
consuming a"+" character, and so on. Termination is obvious,
because any recursive call toE is given strictly less input to parse.

Combinator parsing cannot be used directly if the grammar
contains rules such asE -> E "+" E that are left recursive. A
naive implementation of this rule would attempt to parse anE by
first expanding toE "+" E, and then recursively attempting to
parse anE on the same input, leading to non-termination.

Although it is highly modular, general top-down parsing
is often ignored as it has been traditionally categorized
as expensive, and non-terminating while processing left-
recursive grammars. [Hafiz and Frost 2010]

In practice alternative approaches are used. One approach is
to change the implementation. Earley parsing [Earley 1970] and
other approaches based on dynamic programming can be used to
implement any context-free grammar. Implementations are usually
complex, hard to understand, hard to modify, and hard to maintain.
For example, sixteen years after Earley parsing was introduced
[Tomita 1986] noted that the technique was incorrect for rules
containing the epsilon or empty terminal"". This problem was
eventually fixed in [Aycock and Horspool 2002] but the cost in
terms of further implementation complexity is substantial.

2 The examples in this section are essentially the same as the OCaml ex-
amples described later, but are formally pseudocode because eg names of
OCaml functions must start with a lowercase letter.

Another approach often combined with an alternative imple-
mentation is to limit the grammar, for example by ruling out left-
recursive grammars, or ambiguous grammars. Much more draco-
nian restrictions are typically enforced in practice, and the resulting
grammar classes go by such names as LL, LR, LR(i), SLR, LALR.
Unfortunately the specifications of these restricted classes are often
complicated and rely on details of the underlying implementations.

The current situation is that if your grammar fits into some
known restricted class and there is a reasonable parser generator for
that class (and for your desired implementation language) then im-
plementing a parser may be straightforward. Otherwise you must
typically modify your initial grammar specification so that it fits
one of these classes. Such a process is error-prone and introduces
unwanted complexity into the grammar specification. If the parser
computes some function of the parse tree, rather than simply recog-
nising input, grammar modification may be inappropriate [Frost
and Hafiz 2006].

In practice, parser generators reject grammars with incompre-
hensible messages detailing some failed implementation step eg “a
shift-shift conflict has been detected”. The generated parsers reject
input with similarly mystic pronouncements. Even if the user has
been trained to accept these complications as necessary, the process
of producing a parser is often a frustrating one.

In light of these issues, the benefits of combinator parsing seem
even more appealing: the process of implementation is straightfor-
ward; the resulting implementation is closely related to the gram-
mar specification, which helps ensure soundness; and the imple-
mentation is clean, concise, and comprehensible, which eases mod-
ification and maintenance. Therefore a longstanding goal is to adapt
combinator parsing to handle all context-free grammars. This has
lead to much related work, see Sect. 12. The work most closely
related to ours is that of Frost et al. [Frost and Launchbury 1989;
Frost 1992, 1994; Frost and Hafiz 2006; Frost et al. 2007, 2008;
Hafiz and Frost 2010]. As recently as [Frost and Hafiz 2006], the
approach was known to be incomplete.

. . . Frost and Hafiz (2006) . . . does not accommodate indi-
rect left recursion . . . [Frost et al. 2007]

More recent work, starting from [Frost et al. 2007], tries to limit
the recursive nesting of a parser for a nonterminalX to |s| + 1
when applied to an inputs. If there arem parsers corresponding to
m nonterminals in the grammar, the maximum depth of recursion
is thenm(|s| + 1), and termination is straightforward. However,
correctness of the approach is left for future work.

Future work includes proof of correctness . . . [Frost et al.
2007]

We are constructing formal correctness proofs . . . [Hafiz and
Frost 2010]

This suggests that the authors do not view correctness, in partic-
ular completeness, as an immediate consequence of their approach.
In fact [Frost et al. 2007] seems to state explicitly that the approach
is incomplete, at least for “circular grammars”.

At this point no parse is possible (other than spurious parses
which could occur with circular grammars – which we want
to reject) . . . the grammar is circular (N is being rewritten to
N) . . . [Frost et al. 2007]

However their approach actuallyis complete for arbitrary
context-free grammars. Given a substrings, the worst that can hap-
pen withour approach is that a parser for a nonterminalX is given
a substring of length|s| (the initial input) and recursive calls are
then given an input of length|s|−1, |s|−2, . . . , 0. Clearly the maxi-
mum nesting for a parser for nonterminalX is |s|+1, so for a gram-
mar withm nonterminals recursion is bounded bym(|s|+1). Since

our approach is complete, a simple corollary is thatany approach
that returns all parse trees where the maximum nesting depth of a
parser for a nonterminalX is |s|+1 will be completefor arbitrary
context-free grammars(and this includes the recent work of Frost
et al.). This is a minor contribution of our work.

The main contribution of our work is to show how to imple-
ment simple, terminating, sound and complete parsers for arbitrary
context-free grammars using combinator parsing. Based on this we
define a parser generator for arbitrary context-free grammars and
prove it correct.
Commitment-based parsingCommitment-based parsing is sim-
pler than the general case discussed in the rest of the paper, and has
some merit as an independent implementation technique. The main
reason we present it here is that the underlying intuition is the basis
for the solution in the general case.

Consider the following BNF and its implementation.

(* E -> E "+" E | "1"; faulty implementation *)
let rec E = fun i ->
((E **> (a "+") **> E) ||| (a "1")) i

The recursive call toE may be given exactly the same input as
the parent, which leads to an infinite chain of recursive calls, or
stack overflow. However, when we attempt to parse anE using the
rule E -> E "+" E clearly somethingis decreasing: wecommit
to parsing a+ from the inputafter the first recursive call toE. In
particular, we know that the firstE should not consume the entire
input. An obvious way to ensure this is to give the firstE only a part
of the input. We introduce a parser transformer (a function from
parsers to parsers)ignr last that ignores the last character of the
input when invoking the underlying parser, see Sect. 5 for details.

(* E -> E "+" E | "1" *)
let rec E = fun i ->
(((ignr_last E) **> (a "+") **> E) ||| (a "1")) i

This parser is terminating, sound and complete for the left-
recursive grammarE -> E "+" E | "1".
Analysis Rules are of the formX -> Y . . . Z, whereX is a
nonterminal andY . . . Z are either nonterminals or terminals. We
let Greek lettersα, β, . . . range over sequences of terminals or
nonterminals. For the ruleX -> α X β there are several cases:

• Not α ->+ "" . . . "". By the time the recursive call to parse
X is made, part of the input will have been consumed whilst
parsingα, so the recursive call will receive strictly less input
than the parent, thereby ensuring termination.

• α ->+ "" . . . "", but not β ->+ "" . . . "". Then we can
use commitment-based parsing, and wrap the parser forα X
in ignr last as described above. The input is reduced when
attempting to parseαX, in particular, the input is reduced by
the time the recursive call to parseX is made.

• α ->+ "" . . . "", andβ ->+ "" . . . "", ieX ->+ "" . . . ""X
"" . . . "", which is the problematic general case.

Our example rule involves direct recursion (the rule forX
involvesX on the right-hand side) but the problems are similar
for indirect recursion egX -> α A β andA ->+ α′ X β′.
Structure of the paper In Sect. 2 we discuss notation. In Sect. 3
we give a brief introduction to substrings, which are used exten-
sively in the rest of the paper. In Sect. 4 we give formal defini-
tions for concepts such as terminal, nonterminal, parse rule, gram-
mar and parse tree. In Sect. 5 we give the full implementation of
commitment-based parsing, which usefully introduces much of the
machinery used in later sections. Commitment-based parsing is an
independent technique that is simpler than the general solution, so

represents a minor contribution of this paper. In Sect. 6 we exam-
ine the case of general context-free grammars. We characterize in-
finite parse trees, define an effective approximation based on “bad”
nodes, and show that removing parse trees with bad nodes preserves
completeness. In Sect. 7 we briefly discuss an implementation strat-
egy based on checking for bad nodes and in Sect. 8 we give an
implementation based on these ideas. This requires extending the
input to include a context, and wrapping potentially looping parsers
in a functioncheck and upd ctxt. For example, the following is
the implementation of a terminating, sound and complete parser for
the highly ambiguous grammarE -> E E | "1" | "".

let rec E = fun i ->
check_and_upd_ctxt "E"
((E **> E) ||| (a "1") ||| (a ""))
i

Our approach retains the simplicity and elegance of traditional
combinator parsing whilst extending it to treat all context-free
grammars. In Sect. 9 we implement a parser generator, capable
of taking any context-free grammar and producing a terminating,
sound and complete parser for it. This allows us to state a gen-
eral correctness theorem concerning our approach. In Sect. 10 we
discuss memoization. In Sect. 11 we discuss mechanization of the
implementations and proofs in a theorem prover. There is a great
amount of related work which we discuss in Sect. 12. Finally we
draw some conclusions in Sect. 13.

Our implementation language is OCaml [Leroy et al.]. The com-
plete OCaml code can be downloaded from the author’s home-
page3.

2. Notation
Throughout we mix mathematical definitions and notation with real
OCaml code excerpts formatted using typewriter font. We also use
typewriter font for concrete grammars, nonterminals and terminals.
For example, a concrete nonterminal may be writtenX, whilst a
variable ranging over nonterminals may be writtenX. Concrete
strings are eghello. The length of a strings is |s|. Terminals are
eg"1". Nonterminals are egE.

We write function application asf(i) or f i or fi.
OCaml syntax should be comprehensible to anyone with a

knowledge of a similar functional programming language such
as SML or Haskell. Boolean conjunction is&&. Lists are written
[x;y;z] or x::y::z::[]. Anonymous functionsλx . . . are writ-
tenfun x -> Non-recursive bindings are eglet x =
General recursive function definitions are written eglet rec f =
fun x -> Standard operations arefst,snd to return the first
or second component of a pair;List.map to map a function over a
list; List.concat to form a list from a list of lists by concatenating
them together;List.append to append two lists;List.exists p
xs which returnstrue iff the list xs contains an element satisfy-
ing propertyp; List.filter p xs which returns the elements in
xs satisfying the propertyp; String.length to return the length
of a string;String.sub s l n to return the substring ofs from
positionl with lengthn; s ^ t to return the string formed by ap-
pending the stringss andt. In OCaml(* this is a comment
*).

3. Preliminaries
We need an infix function composition operator.

let ($) f g x = f(g x)

3http://www.cs.le.ac.uk/~tr61/parsing

Note that in OCaml, infix operators are defined using prefix
form, where the operator is surrounded by brackets. We make
extensive use of substrings ie a triple(s, l, h) of a strings, with
low indexl and high indexh, satisfying the invariantl ≤ h ≤ |s|.

type substring = string * int * int

let string (s,l,h) = s

let [low;high;len] = [
(fun (s,l,h) -> l);
(fun (s,l,h) -> h);
(fun (s,l,h) -> h-l)]

let full s = (s,0,String.length s)

let inc_low n (s,l,h) = (s,l+n,h)
let dec_high n (s,l,h) = (s,l,h-n)
let inc_high n (s,l,h) = (s,l,h+n)

let content s =
String.sub (string s) (low s) (len s)

Definition 1 (contiguous, concatenate, span). A pair of two sub-
strings(s, l1, h1) and(s, l2, h2) is contiguous iffl2 = h1, in which
case the substrings can be concatenated to form the substring
(s, l1, h2). A sequence of substrings(s, l0, h0), . . . , (s, ln, hn) is
contiguous iff each pair of adjacent substrings is contiguous, in
which case it can be concatenated to form the substring(s, l0, hn).
A sequence(s, l0, h0), . . . , (s, ln, hn) of substrings spans a sub-
string t iff they can be concatenated to formt.

Typical parser implementations will attempt to parse the longest
prefix of the input.

Definition 2 (contains, prefix, suffix). A substring(s, l1, h1) con-
tains a substring(s, l2, h2) iff l1 ≤ l2 ≤ h2 ≤ h1. If in addition
l2 = l1 we say that(s, l2, h2) is a prefix of(s, l1, h1). Similarly if
h2 = h1 we say that(s, l2, h2) is a suffix of(s, l1, h1).

4. Basic definitions
Definition 3 (symbol, terminal, nonterminal). The set of symbols
is the disjoint union of the set of terminals, the set of nonterminals
and the set of singletons. A singleton is a set containing a single
substring. For every terminalX there is a set of substringsSX .

Terminals and nonterminals are just elements of some uninter-
preted sets. A terminal is implemented by some terminating OCaml
function, the details of which are mathematically irrelevant; what
matters is the set of substringsSX that the implementation of ter-
minalX accepts. A singleton{(s, l, h)} is used to indicate exactly
how a terminal matched a given portion of the inputs.

For an implementation, we must pick some underlying types for
terminals and nonterminals.

type term = string
type nonterm = string
type singleton = substring

type symbol = TM of term
| NT of nonterm | SN of singleton

An example of a parse rule isE -> E "+" E. The right-hand
side may list several alternatives egE -> E "+" E | "1" which
is equivalent to the two rulesE -> E "+" E andE -> "1". Infor-
mally when we talk of a ruleX ->X0 . . . Xi, we mean a rule with
X on the left-hand side, andX0 . . . Xi as one of the alternatives.

Definition 4 (alternative, parse rule). An alternative is a list
[X0, . . . , Xi] of symbols such that eachXj is either a terminal
or a nonterminal. A nonterminal parse rule is a pair(X,Z) of a
nonterminalX and a list of alternativesZ. A terminal parse rule is
a pair (X, [[{x}]]), whereX is a terminal and{x} is a singleton,
such thatx ∈ SX .

In implementations we only need nonterminal parse rules: ter-
minal parse rules are a mathematical abstraction used to model the
behaviour of opaque terminal parsers. Note that the following type
is imprecise as it allows singletons on the right-hand side.

type parse_rule = nonterm * ((symbol list) list)

Definition 5 (grammar). A grammarG is a set of parse rules
formed from a finite set of nonterminal parse rules by adding all
terminal parse rules.

At the implementation level there are no terminal parse rules, so
we identify a grammar with a finite set of parse rules represented
as a list.

type grammar = parse_rule list

Trees are used to describe successful parses. We also use trees
to describe parse attempts that result in looping behaviour by a
hypothetical implementation. For this reason, our definition of tree
includes infinite trees.

Definition 6 (sequence, tree). A sequence is a finite list of natural
numbers. A treeT is a set of sequences such that any prefix of a
sequence inT is also inT .

Although this definition is very concrete, it has the benefit of
being extremely precise. We reassure the reader that none of what
follows depends essentially on the details of this definition. In the
following, we work only with trees that are finitely branching. We
refer to sequencesx ∈ T as nodes ofT . The root node ofT is the
empty sequence[].

Definition 7 (parent, child, descendant, ascendant). If x is a se-
quencex0, . . . , xi in T , andy = x0, . . . , xi, yi+1 ∈ T , thenx is a
parent ofy, andy is a child ofx. The transitive closure of the child
relation is called descendant. The transitive closure of the parent
relation is called ascendant.

Definition 8 (leaf). A sequencex in T is a leaf iffx is not a parent.

Definition 9 (leaf order). The leaf order is simply the lexicographic
order on the underlying sequences (restricted to those sequences
that are leaves). Sequences of differing lengths are compared in the
standard way: the longer sequence is first truncated to the length
of the shorter.

For two distinct leavesx andy, eitherx < y or y < x in the
leaf order.

Definition 10 (decorated tree). A decorated tree is a pair(T, f) of
a treeT and a functionf with domainT .

Definition 11 (subtree underx). Given a treeT , and a nodex ∈ T ,
to form the subtreeT x underx = x0, . . . , xi, first form the setU of
sequences consisting ofx and all descendants ofx, then remove the
common prefixx0, . . . , xi from each sequence to give the treeT x.
To form a decorated subtree(T x, fx) of a decorated tree(T, f) let
fx = λ(y0, . . . , yj).f(x0, . . . , xi, y0, . . . , yj)

Informally, given a grammarG, a parse tree for some initial
input is a tree constructed according to the rules ofG.

Definition 12 (parse tree). Given a grammarG and a substring
(s, l, h), a parse tree is a decorated tree(T,X) consisting of a tree
T and a functionX from nodesx to symbolsXx. For each parent

p ∈ T with children i . . . j, there must be a ruler ∈ G of the
form Xp -> Xi . . . Xj . For each leafx, Xx must be a singleton
{(s, lx, hx)}.

In this definition, the treeT may be infinite. Singletons only
appear at leaves, andXx is a singleton for all leavesx. If x is
a leaf withXx = {(s, lx, hx)}, and y is the parent ofx, then
by the nature of the rules inG, Xy must be a terminal with
(s, lx, hx) ∈ SXy . Furthermore, since there are only a finite num-
ber of nonterminal parse rules inG, there are only a finite number
of nonterminalsXx, that is, the range ofX, restricted to nontermi-
nals, is finite.

Let s be the string1+1. An example of a finite parse tree for
(s, 0, 3) is

E

wwpppppppppppppp

��
''NNNNNNNNNNNNNN

E

��

"+"

��

E

��

"1"

��

{(s, 1, 2)} "1"

��

{(s, 0, 1)} {(s, 2, 3)}

In the previous example, nodesx are annotated with symbols
Xx. An example of an infinite parse tree for the grammarE -> E
E | "1" | "" is

E

�� ��
>

>
>

>
>

>
>

E

��
��

;
;

;
;

;
;

;
;

E

��
:

:
:

:
:

:
:

:

%%KKKKKKKKKKKKKK

...
...

...
...

Some parse trees represent completed parses.

Definition 13 (final parse tree). Given a substrings, a parse tree
(T,X) is final iff

• T is finite
• if the singletons in leaf order are{s0}, . . . , {si} then the sub-

string sequences0, . . . , si spanss.

The example finite parse tree is final. Note that a final parse
tree gives precise information about how the input was parsed.
For a final parse tree(T,X) and a nodex ∈ T , the subtree
(T x, Xx) is also final for the substring formed from concatenating
the singletons at the leaves.

Definition 14 (parsed). Given a grammarG, a substrings can be
parsed as a terminal or nonterminalY iff there is a final parse tree
(T,X) for s such thatX[] = Y ie the root of the tree is decorated
with nonterminalY

For the grammar formed from the nonterminal ruleE -> E
"+" E | 1, the example finite parse tree shows that the substring
(s, 0, 3) can be parsed as anE.

Mathematically a parse tree may be infinite, but at the imple-
mentation level, parse trees are finite.

type parse_tree = PT of symbol * (parse_tree list)

let leaf tm s = PT(TM tm,[PT(SN s,[])])

5. Commitment-based parsing
In Sect. 1 we introduced commitment-based parsing, which al-
lows traditional combinator parsing to handle a wide class of left-
recursive grammars. Commitment-based parsing does not need a
context, which makes it simpler than the general case discussed
in the next section. The central idea of commitment-based pars-
ing is to wrap parsers in the parser transformerignr last, which
reduces the input when calling the underlying parser, thereby en-
suring termination. The purpose of this section is to describe
commitment-based parsing in detail, and to introduce much of the
machinery that will be used in the following sections.

Traditionally a parser is a function from an input strings to
a result, that is, a pair(v, s′) of a value (here, a parse tree) and
the remainder of the string that failed to parse. If a grammar is
ambiguous, then multiple results may be returned in a list. Later,
we refine the input type, but for the moment we identify it with
the type of substrings. The functionssubstr andtoinput convert
from inputs to substrings and vice versa; here they are trivial. The
function lift converts a function on substrings to a function on
inputs.

type input = substring

let id = fun x -> x
let (substr,toinput,lift) = (id,id,id)

type ’a parser = input -> (’a * substring) list

A basic requirement is that a parser should be sound. For the
following definition, note that a parser that returns no results is
sound, as is a parser that fails to return at all.

Definition 15 (sound parser). Given a grammarG and a substring
s, a parser is sound for terminal or nonterminalY iff, if it returns,
then it returns only (implementations of) final parse trees(T,X)
with X[] = Y .

Ideally a parser should also be complete, that is, if there is a
final parse tree for a substrings, then the parser should return at
least one such parse tree.

Definition 16 (complete parser). Given a grammarG and a sub-
string s, a parser is complete for a terminal or nonterminalY iff,
if s can be parsed as aY , then the parser returns at least one (im-
plementation of a) final parse tree(T,X) for s withX[] = Y .

Note that completeness does not require that all final parse trees
for s are returned – there may be an infinite number of them. Note
also that the definitions of soundness and completeness are not
convenient for real implementations which typically return pairs
of a final parse trees for aprefix of the initial input, together with
the remainder of the input that was not parsed.

Definition 17 (prefix-sound parser). Given a grammarG and a
substring(s, l, h), a parser is prefix-sound for terminal or nonter-
minalY iff it returns only pairs((T,X), (s, l′, h))) such that

• (T,X) is a final parse tree for the prefix(s, l, l′) of (s, l, h)
• X[] = Y

• (s, l′, h) is a suffix of(s, l, h)

Definition 18 (prefix-complete parser). Given a grammarG and
a substring (s, l, h), a parser is prefix-complete for a termi-
nal or nonterminalY iff, for any prefix(s, l, l′) of (s, l, h) that
can be parsed as aY , the parser returns at least one pair
((T,X), (s, l′, h)) such that

• (T,X) is a final parse tree for the prefix(s, l, l′) of (s, l, h)
• X[] = Y

• (s, l′, h) is a suffix of(s, l, h)

We defineS"lit" to be substrings whose content is the string
lit. Given the following definition, eg the terminal"1" would be
implemented as(a "1") in OCaml.

(* string -> parse_tree parser *)
let a lit = fun i ->
let n = String.length lit in
let s = substr i in
if
(n <= len s)
&& (String.sub (string s) (low s) n = lit)

then
let (s1,l,h) = s in
let s2 = (s1,l,l+n) in
let r = leaf ("\"" ^ lit ^ "\"") s2 in
[(r,inc_low n s)]

else
[]

Lemma 19. For any grammarG, the parser(a "lit") is a ter-
minating, prefix-sound and prefix-complete parser for the terminal
"lit".

Proof. Termination is clear. A final parse tree(T,X) for the termi-
nal"lit" has the following form

"lit"

��

(s, l, l′)

where the content of(s, l, l′) is the stringlit. Assume(s, l, l′)
is a prefix of(s, l, h), so that(s, l′, h) represents the remainder
of (s, l, h) that is not parsed. For prefix-soundness, it is clear that
given any input(s, l, h) the parser only returns final parse trees of
this form. For prefix-completeness, for all final parse trees(T,X)
of this form, the parser when called on input(s, l, h) returns (the
implementation of)(T,X) paired with(s, l′, h).

Prefix-soundness and prefix-completeness are motivated by im-
plementation concerns, and detract from the mathematical presen-
tation. In what follows, we informally use the terms soundness and
completeness to mean prefix-soundness and prefix-completeness,
but we elide details of the proofs that manage the unmemorable
book-keeping involved in dealing with prefixes.

We need two combinators, representing sequencing (parser 1
then parser 2) and alternation (parser 1 or parser 2, equivalently,
several rules for the same nonterminal).

(* ’a parser -> ’b parser -> (’a * ’b) parser *)
let (**>) p1 p2 = fun s ->
let f (e1,s1) =
List.map (fun (e2,s2) -> ((e1,e2),s2)) (p2 s1)

in
(List.concat $ (List.map f) $ p1) s

(* ’a parser -> ’a parser -> ’a parser *)
let (|||) p1 p2 = fun s -> List.append (p1 s) (p2 s)

Our example BNF directly translates to the following parser.

(* E -> "(" E "+" E ")" | "1" *)
let rec pE = fun i ->
let p1 =
(a "(") **> pE **> (a "+") **> pE **> (a ")")

in

let f = fun (bra,(e1,(plus,(e2,ket)))) ->
PT(NT "E",[bra;e1;plus;e2;ket])

in
((p1 >> f) ||| (a "1")) i

Note that the**> operator associates to the right. The previous
definition makes use of the>> value transformer, which takes a
parserp and a functionf and appliesf to the values returned byp.

(* ’a parser -> (’a -> ’b) -> ’b parser *)
let (>>) p f =
(List.map (fun (e,s) -> (f e, s))) $ p

Commitment-based parsing uses a parser transformer that drops
the last character of the input before invoking the underlying parser,
then adds that character back when returning the results.

(* ’a parser -> ’a parser *)
let ignr_last p = fun i ->
if len (substr i) = 0 then [] else
let inc_high (e,s) = (e,inc_high 1 s) in
((List.map inc_high) $ p $ (lift (dec_high 1))) i

The example commitment-based parser from Sect. 1 is then:

(* E -> E "+" E | "1" *)
let rec pE = fun i ->
let p1 = (ignr_last pE) **> (a "+") **> pE in
let f = fun (e1,(plus,e2)) ->
PT(NT "E",[e1;plus;e2])

in
((p1 >> f) ||| (a "1")) i

For which we have the following

Lemma 20. The example parser is a terminating, sound and com-
plete parser for the grammarE -> E "+" E | "1".

Proof. For termination, calls to(a "1") and(a "+") are termi-
nating by Lemma 19, and recursive calls topE are given strictly
smaller substrings than the parent.

For soundness, when given a substrings as an argument, the
parser returns only terminal parse trees fors, by induction on the
length of the substring, again using Lemma 19 for the base cases.

Completeness is immediate from the stronger property that,
given a substrings, the example parser returns every possible final
parse tree(T,X) for s, which is proved by induction on(T,X),
again using Lemma 19 for the base cases.

We end this section by generalizing the two combinators from
pairs of parsers to lists of parsers.

let always = fun i -> [([],substr i)]

let never = fun i -> []

let rec then_list ps = match ps with
| [] -> always
| p::ps -> (p **> (then_list ps))

>> (fun (x,xs) -> x::xs)

let rec or_list ps = match ps with
| [] -> never
| p::ps -> (p ||| (or_list ps))

6. The general case
The central result of this section is Thm. 22 which gives a charac-
terization of infinite parse trees. Informally this theorem describes

how any depth-first parser might fail to terminate. We use this the-
orem to derive an effective test for potential non-termination. In the
next section we describe how this can form the basis of sound and
complete parsers for arbitrary context-free grammars.

We first define a matched parse tree, which is a parse tree
with additional information at each node about what substring was
parsed by the subtree at that node.

Definition 21 (matched parse tree). A matched parse tree is a triple
(T,X, S) where(T,X) is a parse tree, and(T, S) is a decorated
tree such that

• for every leafx with singletonXx = {(s, lx, hx)} we have
Sx = (s, lx, hx)

• for every parentp with childreni . . . j, the substringsSi . . . Sj

are contiguous, and their concatenation givesSp.

Theorem 22 (infinite-characterization). For all infinite matched
parse trees(T,X, S), there exists a natural numberk, and an
infinite branchx0, x1, . . . , xk, . . . starting at the root such that the
sequenceSxk

, Sxk+1
, . . . is constant.

Proof. The infinite parse(T,X) is finitely branching since the
right-hand side of each rule inG is finite, so by K̈onig’s lemma
there exists an infinite branch of nodesxi decorated with substrings
Sxi

, starting from the root. The low index of each substring in-
creases along this branch, and is bounded above. The high index of
each substring decreases along the branch, and is bounded below.
Thus, eventually the low index and high index of each substring
is constant, say, fromxk. Later nodes are decorated with the same
substring(s, l, h).

The following shows an infinite path in an infinite matched
parse tree for the grammarE -> E E | "1" | "". Nodesx have
been annotated with pairs(Xx, Sx).

(E, (s, 0, 1))

��
$$

I
I

I
I

I
I

I
I

I
I

(E, (s, 0, 0))

��
$$

I
I

I
I

I
I

I
I

I
I

. . .

(E, (s, 0, 0))

��

##
G

G
G

G
G

G
G

G
G

G
G

. . .

...
. . .

Corollary 23. For all infinite matched parse trees(T,X, S), there
exists an infinite branchx0, x1, . . . starting at the root such thatS
andX are constant on some infinite subsequence ofx0, x1,

Proof. From the previous theorem, there existsk such thatS is
constant on the sequencexk, xk+1, Clearly for anyx in this se-
quence,Xx is a nonterminal. Only finitely many nonterminals can
appear in a parse tree, so some nonterminal must appear infinitely
often in the sequenceXxk

, Xxk+1
, . . .

As a further corollary, if there is only one infinite branch in a
parse tree then indeed we must have a ruleX ->+ "" ... ""
X "" ... "". This confirms the analysis from Sect. 1. It also
strongly suggests the following definition.

Definition 24 (bad node, bad descendant). Given a matched parse
tree (T,X, S), a bad node is a nodex ∈ T , with a descendant
x′ ∈ T , such thatXx′ = Xx andSx′ = Sx. In this case, we say
thatx′ is a bad descendant.

(E, (s, 0, 1))

��
$$

I
I

I
I

I
I

I
I

I
I

bad node (E, (s, 0, 0))

��
$$

I
I

I
I

I
I

I
I

I
I

. . .

bad descendant (E, (s, 0, 0))

��

##
G

G
G

G
G

G
G

G
G

G
G

. . .

...
. . .

Lemma 25 (infinite-bad). Every infinite matched parse tree con-
tains infinitely many bad nodes.

Of course, some perfectly valid final matched parse trees may
contain bad nodes as well. For example, ifs is a string of length
one containing1, then the ruleE -> E | "1" clearly gives rise to
an infinite number of final parse trees containing bad nodes.

(E, (s, 0, 1))

��

(E, (s, 0, 1))

��

(E, (s, 0, 1))

��

(E, (s, 0, 1))

��

(E, (s, 0, 1))

��

. . .

("1", (s, 0, 1))

��

("1", (s, 0, 1))

��

({(s, 0, 1)}, (s, 0, 1)) ({(s, 0, 1)}, (s, 0, 1))

Lemma 26(exist-final-bad). There exist final matched parse trees
with bad nodes.

However, final matched parse trees with bad nodes can be
pruned from a set of final matched parse trees without affecting
completeness. We now make precise exactly what we are giving
up.

Lemma 27(bad-node-removal). For each final matched parse tree
(T,X, S) containing bad nodes, there is another final matched
parse tree(T ′, X ′, S′) containing strictly less bad nodes such that
X ′

[] = X[] andS′

[] = S[].

Proof. A bad nodex, with bad descendantx′, can be transformed
to remove the bad node: just replace the subtreeT x with the subtree
T x′

, and adjustX andS in the obvious way. This does not affect
the value ofS andX atx, nor at ascendants ofx. In particular,X[]

andS[] are preserved.

Clearly we can repeat this process to eliminate all bad nodes
from a final matched parse tree. Even though avoiding bad nodes
eliminates some parse trees, it still preserves completeness.

Theorem 28 (no-bad-complete). If a substrings can be parsed
as a nonterminalX by a final matched parse tree, then it can be
parsed as anX by a final matched parse tree containing no bad
nodes.

A consequence of this theorem is that when reasoning about
completeness, we need only consider final matched parse trees with
no bad nodes.

7. Parsing strategy
Given the preceding results, the obvious strategy is to check for
bad nodes while parsing. When attempting to parse some substring
(s, l, h) as a nonterminalX, the information(X, (s, l, h)) should
be recorded in a context before making recursive calls to other
parsers. A recursive call to parse some input(s′, l′, h′) as a non-
terminalX ′ should first examine the context. If(X ′, (s′, l′, h′)) is
already in the context, then some ascendant call is attempting to
parse the same input as the same nonterminal. A successful parse
of the entire substring, followed by a successful parse of the same
substring by the ascendant, results in a bad node. To avoid a bad
node, the parse attempt should be abandoned.

The above reasoning assumes we are trying to parse an entire
substring. However, with left-to-right parsing, it is more common
to attempt to parse some prefix of the substring. The presence of
(X, (s, l, h)) in the context is then taken to mean that some ascen-
dant is attempting to parse a prefix of(s, l, h) as a nonterminalX.
A successful parse of a prefix of(s, l, h) by the descendant does
not necessarily result in a bad node, because the ascendant might
parse a strictly longer prefix. However, we should avoid a success-
ful parse of the entire substring, since in that case a successful parse
by the ascendantwill result in a bad node. Thus, if we ignore the
last character, and attempt to parse(s, l, h− 1) we know

• that we are omitting only parse trees with bad nodes

• that we ensure termination, since recursive calls to parseX are
given strictly smaller substrings

8. Implementation
We illustrate the implementation strategy outlined in the previous
section. We introduce a context representing the parent recursive
calls. For each ascendant, we record the substring given as input,
and what nonterminal was being parsed.

type context = (nonterm * substring) list

The input type is now a pair of a context and a substring.

type input = context * substring

let substr (c,s) = s
let toinput s = ([],s)
let lift f (c,s) = (c,f s)

type ’a parser = input -> (’a * substring) list

The remainder of the code is unchanged, except that we need to
modify the**> combinator, to pass the context to the subparsers.
Note that the contextc is the same whenp1 is invoked as whenp2
is invoked.

(* ’a parser -> ’b parser -> (’a * ’b) parser *)
let (**>) p1 p2 = fun (c,s) ->
let f (e1,s1) =
List.map (fun (e2,s2) -> ((e1,e2),s2)) (p2 (c,s1))

in
(List.concat $ (List.map f) $ p1) (c,s)

Following the strategy of the previous section, we define a
parametrised parser transformer to update the context. The extra
parameter records the nonterminal that is being parsed.

(* nonterm -> ’a parser -> ’a parser *)
let update_ctxt nt p = fun (c,s) -> p ((nt,s)::c,s)

As well as updating the context, we need to check whether any
ascendant call is attempting to parse the same substring as the same
nonterminal, in which case we should trim the input by ignoring the
last character in the substring when calling the underlying parser.

(* nonterm -> ’a parser -> ’a parser *)
let check_and_upd_ctxt nt p = fun (c,s) ->
let should_trim = List.exists ((=) (nt,s)) c in
if should_trim && (len s = 0) then
[]

else if should_trim then
(ignr_last (update_ctxt nt p)) (c,s)

else
(update_ctxt nt p) (c,s)

In general, to avoid non-termination when parsing a nonter-
minal X, simply wrap the body of the parser forX in a call to
check and upd ctxt. For example, the following is a terminat-
ing, sound and complete parser for the highly ambiguous grammar
E -> E E | "1" | "".

let rec pE = fun i -> check_and_upd_ctxt "E"
(((pE **> pE) >> (fun (s,t) -> PT(NT "E",[s;t])))
||| (a "1")
||| (a ""))
i

When attempting to prove correctness and in particular com-
pleteness, we need to show that a parser will produce some given
parse tree. Whether it will or not depends on the context. The fol-
lowing definition characterizes those parse trees that may be re-
turned by a parser when supplied with a given context.

Definition 29 (admits). Let (T,X, S) be a finite matched parse
tree. LetS[] = (s, l, h) be the substring matched by the root. A
contextc admits(T,X, S) iff

• Ascendants are attempting to parse longer substrings ie if
(Xi, (s, li, hi)) ∈ c then(s, l, h) is contained in(s, li, hi).

• The substring(s, l, h) matched by the root is not bad ie it is not
the case that(X[], (s, l, h)) ∈ c.

• Let c′ be the extension ofc by the pair(X[], (s, l, h)). If xi

is a child of the root thenc′ must admit the decorated subtree
(T xi , Xxi , Sxi).

Note that the initial empty context admits all finite parse trees
with no bad nodes.

Lemma 30. The implementation of the example parser is termi-
nating, sound and complete for the grammarE -> E E | "1" |
"".

Proof. For termination, it suffices to define a measure that de-
creases with each recursive call. Suppose the finite set of nonter-
minals in the grammar is{X0, . . . , Xi}. If the input is(c, (s, l, h))
then for eachXi the contextc contains a pair(Xi, (s, li, hi)) such
that the lengthmi = hi − li is minimal (if Xi does not appear in
the context, takemi = |s| + 1). The measureΣimi decreases on
each recursive call.

For soundness, from Lemma 19 the base parsers(a "") and
(a "1") are sound. From termination, we induct on the length
of execution to show that the example parser is sound, noting that
check and upd ctxt "E" p only removes parse trees that might
be returned by the underlying parserp.

For completeness, from Theorem 28 it suffices to show that
every finite matched parse tree with no bad nodes is returned by

let parse_while pred = fun i ->
let s = substr i in
if len s = 0 then [] else
let rec f = fun n ->
if n = len s then len s else
let c = String.sub (string s) ((low s)+n) 1 in
if pred c then f (n+1) else n

in
let n = f 0 in
let r = (string s, low s, (low s)+n) in
[(r,inc_low n s)]

let not_epsilon p = fun i ->
List.filter (fun (v,_) -> not (len v = 0)) (p i)

let parse_AZS =
let pred c =
(String.compare "A" c <= 0)
&& (String.compare c "Z" <= 0)

in
not_epsilon (parse_while pred)

Figure 1. Implementation of terminal parser?AZS?

the example parser. The following is immediate by induction on
T : for all finite matched parse trees(T,X, S) and all contextsc
that admit(T,X, S), if S[] = (s, l, h) then the example parser
when called with input(c, (s, l, h)) returns (the implementation of)
(T,X).

Note that if the grammar containsm nonterminals, and the
initial substring is(s, 0, |s|), then the empty context has measure
m(|s|+ 1).

9. A parser generator
In this section we use our approach to implement a parser generator,
which takes an arbitrary context-free grammar and produces a
terminating, sound and complete parser for that grammar. This
allows us to state a general theorem concerning the correctness of
our approach.

The following is a syntax for BNF. We have adopted two fea-
tures from Extended BNF: nonterminals do not have to be writ-
ten within angled brackets, and arbitrary terminals can be writ-
ten within question marks. The terminal?ws? accepts non-empty
strings of whitespace,?notdquote? (resp.?notsquote?) accepts
strings of characters not containing a double (resp. single) quote
character,?AZS? accepts non-empty strings of capital letters, and
?azAZs? accepts non-empty strings of letters.

RULES -> RULE | RULE ?ws? RULES
RULE -> SYM ?ws? "->" ?ws? SYMSLIST
SYMSLIST -> SYMS | SYMS ?ws? "|" ?ws? SYMSLIST
SYMS -> SYM | SYM ?ws? SYMS
SYM -> ’"’ ?notdquote? ’"’ | "’" ?notsquote? "’"

| ?AZS? | "?" ?azAZs? "?"

The implementation of a parser for this grammar is direct. The
most complex parser is the one forSYM, see Fig. 2. This uses
terminal parsers such as?AZS? whose implementation is given in
Fig. 1. The top-level parser forRULES returns a list of rules. To turn
the list of rules into a parser, we use the parser generator in Fig. 3.

The parser generatorrules to parser is parametrised by
a functiontm to p which converts terminals such as?AZS? to
parsers such asparse AZS. The argumentrs is a grammar (a list of
rules), and the argumentnt identifies which nonterminal the parser

let parse_SYM = fun i ->
((((a "\"") **> parse_notdquote **> (a "\"")) >> (fun (_,(s,_)) -> TM("\"" ^ (content s) ^ "\"")))
||| (((a "’") **> parse_notsquote **> (a "’")) >> (fun (_,(s,_)) -> TM("’" ^ (content s) ^ "’")))
||| (parse_AZS >> (fun s -> NT (content s)))
||| (((a "?") **> parse_azAZs **> (a "?")) >> (fun (_,(s,_)) -> TM("?" ^ (content s) ^ "?"))))
i

Figure 2. A SYM parser

(* (term -> parse_tree parser) -> grammar -> nonterm -> parse_tree parser *)
let rec rules_to_parser tm_to_p rs nt = fun i ->
let rules = List.filter (fun (a,b) -> a = nt) rs in (* rules for nt *)
let rhss = List.map snd rules in (* right-hand sides of rules *)
let alts1 = List.concat rhss in (* alternatives are lists of symbols *)
let sym_to_p sym = (* transform a symbol to a parser *)
match sym with
| TM lit -> tm_to_p lit (* base case *)
| NT nt -> rules_to_parser tm_to_p rs nt (* recursive case *)
| SN _ -> never (* impossible, no singleton in rhs *)

in
let alts2 = List.map (List.map sym_to_p) alts1 in (* alternatives are now lists of parsers *)
let g ps = then_list ps >> (fun xs -> PT(NT nt,xs)) in (* transform an alternative to a parser *)
let alts3 = List.map g alts2 in (* alternatives are now parsers *)
let p = or_list alts3 in (* a single parser for all alternatives *)
check_and_upd_ctxt nt p i (* apply parser to input *)

Figure 3. A parser generator

is for. The code gathers a list of alternatives from the right-hand
sides of rules fornt. Each alternative is a list of terminals and
nonterminals. Nonterminals are transformed to parsers by calling
rules to parser recursively. Terminals are transformed to basic
parsers viatm to p. The list of alternatives is then transformed to
a single parser using the combinatorsthen list andor list. Fi-
nally, to avoid non-termination, the result parser is wrapped in a
call tocheck and upd ctxt.

Theorem 31 (parser-generator-correct). Given a total mapping
tm to p such thattm to pX is a terminating, sound and complete
parser for all terminalsX, and a grammarG formed from a set
of nonterminal parse rulesrs, then for all nonterminalsnt, the
parser generatorrules to parser produces a sound, complete,
and terminating parser fornt.

Proof. The proof of correctness for an arbitrary grammarG and
arbitrary nonterminalnt is a direct generalization of the correctness
proof for the particular grammar and particular nonterminal from
Lemma 30. For example, for termination we show simultaneously
that the parsers for each nonterminalnt are terminating on input
(c, (s, l, h)) using exactly the same measure from Lemma 30.

Of course, the parser generator can accept its own grammar as
input.

10. Memoization
The main focus of this paper is on correctness, in particular com-
pleteness. Completeness and efficiency are hard to reconcile. Our
parsers are complete in the sense that they return all final parse trees
with no bad nodes. Some highly-ambiguous left-recursive gram-
mars generate an exponential number of such parse trees. If we
enforce completeness, we seemingly must accept that our parsers
take an exponential amount of time. Of course, many grammars do
not generate exponentially many non-redundant parse trees.

Even if we insist on completeness, we still want our parsers to
be as efficient as possible. An obvious way to increase efficiency
of combinator parsers is to use memoization. Following [Norvig
1991] memoized combinator parsing is polynomial time for non-
left-recursive grammars. In the presence of a context, efficient
memoization is not straightforward, so here we briefly outline the
issues.

Given a functionf taking a single argumentx and to a result
fx, memoization involves storing the pair(x, fx) in a lookup table
when f first returns, and on subsequent invocations off on the
same argumentx, returning the resultfx without actually executing
f .

A parserp is a function which takes inputs as arguments. Here,
an input is a pair(c, s) of a contextc and a substrings. Naively
adopting memoization is inefficient, because the contextc is very
redundant: there are many contextsc′ which are different fromc,
but for which a parser, when called with the pair(c′, s) will give
the same result as when called with the pair(c, s): c and c′ are
equivalent as far asp is concerned. If we fail to take this into
account, then we will computep (c, s) andp (c′, s) (and there may
be many suchc′) whereas we need only computep (c, s).

The most obvious source of redundancy is that contexts are
semantically sets, but are implemented as lists. Thus, ifc′ is a
permutation ofc, then c′ is equivalent toc. A typical fix is to
ensure that there is only one way to represent contexts that are
permutations of each other eg by sorting contexts lexicographically
on the first component, and by substring length on the second (the
substrings are nested, so this is indeed a total order).

When a parser for nonterminalX is given a substring(s, l, h)
and a contextc as argument, then the context contains pairs of a
terminalXi and a substring(s, li, hi). It is clear that any ascendant
must be parsing a substring that contains the substring currently
being considered. Moreover, the only items in the context that
affect the current call are those such that(li, hi) = (l, h). Thus,
two contextsc andc′ which agree on the nonterminalsXi in the

context with(li, hi) = (l, h) are equivalent. The obvious fix when
memoizing a function call with contextc as an argument is to
discard all those terminalsXj ∈ c where(lj , hj) 6= (l, h).

Memoization can dramatically improve parsing performance,
especially for highly ambiguous grammars. However, existing ar-
guments about the efficiency of memoization for combinator pars-
ing [Norvig 1991] cannot be applied directly. The problem lies with
the input components which is a substring rather than the usual
string. Traditionally parsers try to parse prefixes of some suffixs
of the original inputs0. Memoization ensures that the parser will
only ever be called once for a given suffixs, equivalently, the parser
will only ever be called once to parse from positioni in the original
string s0. With our approach, even using memoization, the parser
may be called many timesto parse a substring starting at positioni,
since we do not try to parse the rest of the original inputs0, but the
rest of the substring(s0, i, j), andj can take many values. This is
the major source of inefficiency with our approach.

11. Mechanization in a theorem prover
Mechanization of definitions and proofs in a theorem prover can
provide strong guarantees of correctness that surpass what is possi-
ble with informal mathematics. In this section we give a brief guide
to mechanizing the results of the preceding sections.

The easiest approach to mechanizing these results is to rephrase
the OCaml code in the internal programming language of a theo-
rem prover such as Coq [The Coq Team], Isabelle [Paulson et al.]
or Hol [Norrish et al.]. The OCaml code is simply-typed and purely
functional and can therefore be transcribed directly into these theo-
rem provers. An alternative would be to mechanize the operational
semantics of OCaml and prove that the OCaml implementation is
correct. This provides little further assurance but is significantly
more difficult.

The top-level goal should be to prove a mechanized version of
Thm. 31. This theorem only requires finite parse trees and the only
results needed from Sect. 6 are those concerning bad nodes. In par-
ticular, the infinite characterization of Thm. 22 which involves a
detour via K̈onig’s lemma does not need to be mechanized. Work-
ing with finite parse trees makes the mechanization significantly
easier. For example, the matched parse trees of Defn. 21 can be de-
fined as afunction from parse trees to substrings using primitive
recursion on the structure of the tree.

12. Related work
A large amount of valuable research has been done in the area of
parsing. We do not aim to survey the entire field, but instead aim
to give complete references to work that is most directly related to
our own.

Context-free grammars were first identified in [Chomsky 1956].
Context-free grammars enforce block structure. Block-structured
programming was introduced by the ALGOL programming lan-
guage [Naur et al. 1960], two of the designers of which gave their
names to the Backus-Naur Form, a formalism for defining context-
free grammars.

The most famous parser generator is Yacc [Johnson 1975], but
it cannot handle arbitrary context-free grammars. The first parser
generators that can handle arbitrary context-free grammars are
based on dynamic programming. Examples include CYK parsing
[Kasami 1965] and Earley parsing [Earley 1970]. In these early
works, the emphasis is on implementation concerns, and in partic-
ular completeness is often not clear. For example [Tomita 1986]
notes that Earley parsing is not complete for rules involving the
empty string terminal"" (also known as epsilon). However, it is
in principle clear that variants of these approaches can be proven
complete for arbitrary context-free grammars.

Combinator parsing and related techniques are probably folk-
lore. An early approach with some similarities is [Pratt 1973]. Ver-
sions that are clearly related to the approach taken in this paper
were popularized in [Hutton 1992; Wadler 1985].

Ambiguous grammars can give rise to an infinite number of
parse trees for a given input. Parsers that return a list of parse trees
must therefore omit some. Our approach avoids “bad” nodes, which
indirectly forces termination, but most other approaches attempt to
bound the recursion directly, based on the length of the input string.
The first approach to use the length of the input to force termination
is [Kuno 1965]; the focus is on implementation and efficiency, and
completeness is not addressed. Similar current work by Frost et al.,
which is the most closely related to our own, was discussed in Sect.
1.

[Norvig 1991] shows that polynomial time complexity can be
achieved in mutually-recursive top-down parsing by using memo-
ization. Unfortunately his argument “assumes that there are no left-
recursive rules”. This restriction is lifted in [Johnson 1995]. The
cost is a much more complicated implementation via continuations,
and it is not clear that this preserves polynomial time complexity,
or correctness when combined with memoization.

An interesting recent development is the formal verification of
parsers. Current examples such as [Barthwal and Norrish 2009;
Koprowski and Binsztok 2010] do not use combinator parsing, and
cannot handle all context-free grammars.

13. Conclusion
We presented a parser generator that takes an arbitrary grammar as
an argument and produces a parser for the grammar as a result. The
result parser is terminating, sound and complete for the grammar.
In addition, we noted that any approach that, given inputs, returns
all parse trees where the maximum nesting depth of a parser for a
nonterminalX is |s|+1 will be complete forarbitrary context-free
grammars. This gives a correctness proof for the approach of [Frost
et al. 2007, 2008; Hafiz and Frost 2010].

Our proofs use informal mathematics. Following Sect. 11 it
should be straightforward to mechanize the proofs in a theorem
prover such as Hol [Norrish et al.], Isabelle [Paulson et al.] or Coq
[The Coq Team].

Existing formalisms, such as BNF, deal only with grammar
rules. Real implementations typically also deal with “semantic ac-
tions”, that is, what to do with the results of a parse. We use very
basic actions since our parsers produce only parse trees. It may
be worth formalizing the notion of semantic action, and extend-
ing BNF to take actions into account. The paper [Koprowski and
Binsztok 2010] does this for parsing expression grammars, by sim-
ply allowing an arbitrary Coq function as part of the syntax of the
grammar. However, to be generally useful, some particular syntax
for actions should be defined.

The focus of our work is on correctness, and we believe our
approach inherits all the benefits of combinator parsing. For prac-
tical applications, however, efficiency is often the overriding con-
cern. We hope that alternative implementation strategies based on
our ideas can be made competitive with the most efficient alterna-
tives, such as Packrat parsing [Ford 2002], at least when applied
to the same restricted grammar classes that these alternatives tar-
get. We leave alternative implementation strategies, and efficient
implementation for future work.

Parsing and pretty-printing are related activities. Future work
should aim to produce a companion pretty-printer for a given
parser, such that pretty-printing followed by parsing is the iden-
tity function. To be practically useful, a pretty-printer should try to
minimize the amount of redundant information such as superfluous
brackets.

The main motivation for this work was to produce simple,
sound and complete parsers for all context-free grammars based
on combinator parsing. We feel the parser generator is optimal
in terms of clarity and elegance. We would be very pleased if
these techniques were taken up and used in real applications. In
particular, we have no insight as to whether the efficiency problems
outlined in Sect. 10 are a problem in practice, and we therefore
welcome feedback on these issues.

References
J. Aycock and R. N. Horspool. Practical earley parsing.Comput. J., 45(6):

620–630, 2002.

A. Barthwal and M. Norrish. Verified, executable parsing. InG. Castagna,
editor,ESOP, volume 5502 ofLecture Notes in Computer Science, pages
160–174. Springer, 2009. ISBN 978-3-642-00589-3.

N. Chomsky. Three models for the description of language.IRE Trans.
Info. Theory, 1:113–124, 1956.

J. Earley. An efficient context-free parsing algorithm.Commun. ACM, 13
(2):94–102, 1970. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
362007.362035.

B. Ford. Packrat parsing: simple, powerful, lazy, linear time, functional
pearl. In ICFP 02: Proceedings of the seventh ACM SIGPLAN inter-
national conference on Functional programming, volume 37/9, pages
36–47, New York, NY, USA, 2002. ACM. doi: 10.1145/583852.
581483. URLhttp://pdos.csail.mit.edu/~baford/packrat/
icfp02/packrat-icfp02.pdf.

R. Frost and J. Launchbury. Constructing natural language interpreters in
a lazy functional language.Comput. J., 32(2):108–121, 1989. ISSN
0010-4620. doi: http://dx.doi.org/10.1093/comjnl/32.2.108.

R. A. Frost. Constructing programs as executable attribute grammars.
Comput. J., 35(4):376–389, 1992.

R. A. Frost. Using memoization to achieve polynomial complexityof
purely functional executable specifications of non-deterministic top-
down parsers.SIGPLAN Notices, 29(4):23–30, 1994.

R. A. Frost and R. Hafiz. A new top-down parsing algorithm to accommo-
date ambiguity and left recursion in polynomial time.SIGPLAN Notices,
41(5):46–54, 2006.

R. A. Frost, R. Hafiz, and P. C. Callaghan. Modular and efficient top-
down parsing for ambiguous left-recursive grammars. InIWPT ’07: Pro-
ceedings of the 10th International Conference on Parsing Technologies,
pages 109–120, Morristown, NJ, USA, 2007. Association for Computa-
tional Linguistics. ISBN 978-1-932432-90-9.

R. A. Frost, R. Hafiz, and P. Callaghan. Parser combinators forambiguous
left-recursive grammars. In P. Hudak and D. S. Warren, editors, PADL,
volume 4902 ofLecture Notes in Computer Science, pages 167–181.
Springer, 2008. ISBN 978-3-540-77441-9.

R. Hafiz and R. A. Frost. Lazy combinators for executable specifications
of general attribute grammars. In M. Carro and R. Peña, editors,PADL,
volume 5937 ofLecture Notes in Computer Science, pages 167–182.
Springer, 2010. ISBN 978-3-642-11502-8.

G. Hutton. Higher-order functions for parsing.J. Funct. Program., 2(3):
323–343, 1992.

M. Johnson. Memoization in top-down parsing.Computational Linguistics,
21(3):405–417, 1995.

S. C. Johnson. Yacc: Yet another compiler compiler. Computer Science
Technical Report #32, Bell Laboratories, Murray Hill, NJ, 1975.

T. Kasami. An efficient recognition and syntax analysis algorithm for
context-free languages. Technical Report AFCRL-65-758, Air Force
Cambridge Research Laboratory, Bedford, Massachusetts, 1965.

A. Koprowski and H. Binsztok. TRX: A formally verified parser inter-
preter. In A. D. Gordon, editor,ESOP, volume 6012 ofLecture Notes
in Computer Science, pages 345–365. Springer, 2010. ISBN 978-3-642-
11956-9.

S. Kuno. The predictive analyzer and a path elimination technique. Com-
mun. ACM, 8(7):453–462, 1965. ISSN 0001-0782. doi: http://doi.acm.
org/10.1145/364995.365689.

X. Leroy et al. OCaml.http://caml.inria.fr/.

P. Naur, J. W. Backus, et al. Report on the algorithmic language ALGOL
60. Communications of the ACM, 3(5):299–314, May 1960.

M. Norrish et al. The HOL4 theorem prover.http://hol.sourceforge.
net/.

P. Norvig. Techniques for automatic memoization with applications to
context-free parsing.Comput. Linguist., 17(1):91–98, 1991. ISSN 0891-
2017.

L. Paulson, T. Nipkow, and M. Wenzel. The Isabelle distribution. http:
//www.cl.cam.ac.uk/Research/HVG/Isabelle.

V. R. Pratt. Top down operator precedence. InProceedings ACM Sympo-
sium on Principles Prog. Languages, 1973.

The Coq Team. The Coq Theorem Prover.http://coq.inria.fr/.

M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for
Practical Systems. Kluwer, Boston, 1986.

P. Wadler. How to replace failure by a list of successes: A method for ex-
ception handling, backtracking, and pattern matching in lazy functional
languages. InFPCA, pages 113–128, 1985.

