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Abstract Higher up, verified operating systems and compilers are emerging.
However, at the top of the stack, there is a huge gap between ab-
stract mathematical models of programs and implementations in
real code. Distributed infrastructure exemplifies this gap. The ide-
alised models of distributed components may be reasonably clean,
but implementations, forced to contend with failing hosts, failing
network connections etc, while retaining good performance, are of-
ten significantly more complex. Formal techniques are rarely capa-
ble of addressing the full complexity of such implementations. This
paper describes the successful application of operational methods
to mechanically verify a core piece of distributed infrastructure.
This sets a new high-water-mark for the verification of executable
code in a behaviourally rich language and environment, demon-
strating that such verification is feasible. At the same time it es-
tablishes a challenge to make such proofs more automatic, and to
develop verification techniques that can address even richer pro-
grams.

The distributed infrastructure in question is a persistent message
queue [29]. Persistent message queues provide reliable message
delivery in the presence of host and network failure. As such,
fthey are a core piece of enterprise computing infrastructure and

are widely deployed in many large companies. They are included
in several enterprise application stacks, such as J2EE [8], and
f marketed by competing vendors such as TIBCO and IBM.

The implementation discussed here was written by the author
Ip exhibit many of the issues that would be expected in a produc-
fion implementation, albeit on a somewhat smaller scale. Its perfor-
mance is reasonably good and competitive with other implementa-

This work develops an integrated approach to the verification of
behaviourally rich programs, founded directly on operational se-
mantics. The power of the approach is demonstrated with a state-
of-the-art verification of a core piece of distributed infrastructure,
involving networking, a filesystem, and concurrent OCaml code.
The formalization is in higher-order logic and proof support is pro-
vided by the HOL4 theorem prover.

Difficult verification problems demand a wide range of tech-
nigues. Here these include ground and symbolic evaluation, local
reasoning, separation, invariants, Hoare-style assertional reason
ing, rely/guarantee, inductive reasoning about protocol corregtnes
multiple refinement, and linearizability. While each of these tech-
niques is useful in isolation, they are even more so in combination.
The first contribution of this paper is to present the operational ap-
proach and describe how existing techniques, including all those
mentioned above, may be cleanly and precisely integrated in this
setting.

The second contribution is to show how to combine verifica-
tions of individual library functions with arbitrary and unknown
user code in a compositional manner, focusing on the problems o
private state and encapsulation.

The third contribution is the example verification itself. The
infrastructure must behave correctly under arbitrary patterns o
host and network failure, whilst for performance reasons the code
also includes data races on shared state. Both features make th
verification particularly challenging.

Categories and Subject Descriptors D.1.3 [Concurrent Pro- tions. Excerpts from the code are given in Section 2.
gramming]: Distributed programming; F.3.15pecifying and Ver- To verify such code, one needs a formal model of the system.
ifying and Reasoning about Programs] This includes a model of the implementation language or languages

(in this case OCaml), a model of a live host (in this case including
mutexes, condition variables, the store, network connections, and
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Section 4 contains a brief overview of the verification, which
sets the scene for the later sections. The verification involves rea-
soning directly about the operational semantics, rather than the
more usual approach via a program logic, primarily for the prag-
matic reason that operational reasoning can support all the tech-
nigues that were needed for the verification. The overhead of using

filename = string

ip = Unix.inet_addr
port int

quad = ip*port*ip*port

type
type
type
type

type
ype

rqueue
squeue

these techniques is very low: one can omit the separate definitionval 1isten  : quad — filename — rqueue
of a program logic and the accompanying soundness proof and in-val available : rqueue — bool
stead work within the flexible environment of higher-order logic. Val peek ¢ rqueue — string
Moreover, the uniform foundation allows these techniques to be in- Y27 Temeve @ raueue — unit

J " q val connect : quad — filename — squeue
tegrated together cleanly, as described later. val send : squeue — string — unit

In Section 5 the specification of the persistent queue is pre-

sented. This specification is further refined in Sedtibn 6. The queue
is not a whole program that runs in its own process, but a concur-
rent library intended for use by user applications. The infrastruc-
ture must perform correctly whatever actions the user application
performs. The specification therefore needs to address library cor-
rectness in arbitrary context, which is a form of compositionality.
The infrastructure is distributed, so the specification needs to de-
tail what happens when other hosts crash or the network fails. The
specification crucially also needs to support proofs of correctness of
user applications which use the library, since this is one of the main
purposes of a specification. The specification establishes complex
properties far removed from simple generic safety properties such
as memory safety.

To prove that the implementation meets the specification in-

Figure 1. Queue signature (OCaml)

type queue = {
(* shared state *)

lock : Mutex.t ;
cond : Condition.t ;
msgs : (string list) ref

(* active thread local state *)
b : bool ref ;

fd : Message.conn option ref
(* constant *)

quad : quad ;

fn : string ;

}

volves several existing technigues, which need to be integrated andiet mk_queue quad fn is_sender = {

used in combination. In Sectibn 7 | recall these existing techniques,
show how they are expressed formally in an operational setting (as
lemmas and proof idioms about the operational semantics rather
than as proof rules in some program logic), and most importantly
show how they are integrated together to provide strong support
for verification. In Section 8 a particularly interesting part of the
correctness proof involving data races on shared state is discussed

In Sectiori 9 several new techniques are developed, which cap-
ture intuitive notions of privacy and encapsulation. These are used
when reasoning about the composition of the queue library code
(which involves private state shared between several library func-
tions) and arbitrary user code. These notions are simple and gen-
eral: several of the main lemmas are applicable to arbitrary OCaml
code, and can therefore be reused in future verifications.

The verifications of the queue API methods are independent of
each other, and these verifications are composed with a verification
of arbitrary user code to give a correctness proof for the whole
system. This process of composition is described in Settion 10.
References to related work are included in the body of the paper,
and further references appear in Sedtion 11. Finally | evaluate what
has been achieved, draw conclusions, and look to the future in
Section 12.

Reasoning directly about the operational semantics is only fea-
sible with machine assistance. Most of the arguments described in
this paper, including the refinement of the abstract queue to the
alternating bit protocol, the verification of the individual OCami
functions, and the verification of the privacy metatheory, have been
mechanized in HOL4. The part of the proof that deals with host
and network failure at the implementation level has so far not been
been mechanized, although these behaviours are dealt with at th
intermediate level of the alternating bit protocol.

lock
cond
msgs

Mutex.create () ;
Condition.create () ;
ref [] ;

ref is_sender ;

ref None ;

quad ;

fn ;

fd
quad
fn
in

let init
let _
let _
try
let (
let
let

O

q:
Mutex.lock g.lock in

:: msgs ) = File.read q.fn in
gq.b := bool_of_string b in
g.msgs := msgs in

n i o

with _ — O in
let _ = Mutex.unlock g.lock in
O in

let save q =
let b = string_of bool (! ( g.b ) ) in
try
File.write q.fn ( b ::
with
| File.Exception — Some File.Exception in ...

(! (q.msgs ) ) ) ; None

Figure 2. Queue shared sender/receiver code (OCaml)

The queue endpoints communicate over TCP/IP, using a proto-

col based on the alternating bit protocol, and log their state to per-

istent store. To abstract slightly from the details of TCP/IP and the
ilesystem, we use two libraries for messagiMggsage) and file

accessKile). The messaging library allows communication us-

. ing strings rather than a byte stream. The file library allows atomic
2. Implementation code file update by first writing to a temporary file and then renaming

The queue is written in OCaml and makes use of the OCaml Unix to the real target (POSIX-compliant filesystems provide atomic file
and Thread libraries. The signature for the queue is given in Fig. 1, rename). Although small, these libraries are written above rather
the code shared between sender and receiver in Fig. 2, and the codeomplex APIs, so that their correctness is far from obvious. Ideally
for the sender in Fig.|3. The code for the receiver is similar to that they should also be verified, but in this work their correctness is
for the sender and so is omitted. assumed.



let private_send q = 'a exp =

let _ = Mutex.lock g.lock in Wrap of ’a
let _ = | Var of var

while ! ( q.msgs ) = [] do | Lam of (var # exp)

Condition.wait q.cond q.lock | App of (exp # exp)

done | LetVal of (var # exp # exp)
in [
let _ = Mutex.unlock g.lock in
let msgs = [ string_of_bool (! ( g.b ) ) ; expr = unit exp

List.hd ( ! ( g.msgs ) ) ] in

let _ = Message.send ( dest_Some ( ! ( q.fd ) ) ) msgs in closure = Cl of expr#((var#closure)list)
O in

hole_or_clo = Hole | Clo of closure
let private_recv q =
let msg = List.hd ( Message.recv ( dest_Some ( ! ( g.fd ) ) ) ) in context = hole_or_clo exp
if ! ( g.b ) = bool_of_string msg then (

let _ = Mutex.lock g.lock in framestack = context list

let _ = g.msgs := List.tl (! ( q.msgs ) ) in

et g:ﬁe:: ot (1 Cab)) in Figure 4. Core OCaml datatypes (HOL)
let _ = Mutex.unlock g.lock in

maybe_raise e
) else () in .
The queue is asynchronous: a calldennect may return a

let sender q = queue before any network communication has taken place, whilst a
"hill_; true do call to send affects only the local endpoint. The active management
q.£d := Some ( Message.connect q.quad ) ; thread handles all communication with the other endpoint.
while true do
private_send q ;
dong vate-recy 4 3. Formal models
with ) The correctness of the queue is a formal statement in higher-order
! Me;;:gfl'}f"zegtign):it(h logic. Before this statement can be constructed, the various parts
| None — O of the system must be formally defined. At the heart of the model
| Some fd — ( Message.close_noerr fd ; q.fd := None ) ) is an operational semantics for a pure OCaml expression. This is
| e — (raise e) extended to a model of arbitrarily many individual threads exe-
done in cuting in the context of a host. Threads can create other threads
let _connect quad fn = dynamically. Threads share access to a store, mutexes and condi-
let q = mk_queue quad fn true in tion variables, a filesystem, and a set of network connections. At
iz: - ;E;Eag z‘r‘eate sender q in the next level up, a network consists of many hosts communicat-
qin N ' ing using messages sent over TCP/IP. To capture the transient na-
ture of hosts and network connections, the model allows them to
let _send g s = . fail at any time, although host filesystems persist. All code ex-
i‘:ﬁ -z I;‘.‘;zgél‘:’ik(q'(l‘!“lz ;’_‘msgs Sya[s])in cerpts from now on are written in the HOL4 syntax of higher-
let e = save q in order logic, which is similar to the syntax of OCaml. The pair
let _ = Mutex.unlock g.lock in type constructor is writte#. Finite map update is writteFUPDATE
let _ = Condition.broadcast q.cond in f (arg,result) or alternativelyf |+ (arg,result). Records
%?tiﬂ = maybe_raise e in are written<| fld:=val; f1d’:=val’ |>. List append is writ-

tenxs++ys. Logical negation is written as a tilde.

let connect quad fn = OCaml expressionsPrevious work by the author [26] used flat

fﬁzng ; {ﬁomea quad fn in expressions, whereas here the operational semantics for OCaml is
based closely on the CEK machine [5], which uses closures and a
let send g s =qsin ... framestack. The use of closures and a framestack introduces more
structure into the representation of program state, which is helpful
Figure 3. Queue sender code (OCaml) for verification. For example, substitution instances of a function

are easier to identify because, using a closure representation, the
body of the function remains constant. The fragment of OCaml that
is modelled is sufficient to express the implementation code given
A queue endpoint is created when the user cailsten or previously. The most important omission is the OCaml module
connect. In both cases, the user supplies a quad, identifying the language.
local and remote endpoint addresses, and the filename of the log The HOL datatype for a core subset of OCaml expressiaps
file used to store persistent information about the endpoint state.is given in Fig/ 4. If we ignore th@rap constructor, this gives a
In the case ofkonnect, a call is made to the auxiliary function  standard “flat” datatype for expressions. Tieap constructor is
_connect, which creates and initializes the queue and then starts used to modetlosures, contexts, andframestacks.
up the active management thread which runsséeler function. The reduction rules for a closurel in a framestackfs are
The thread sits in an outer loop, initializing and reinitializing the given in Fig! 5. A thread is a pair where the second component is a
TCP/IP connection to the other endpoint, and then running an inner framestack, and the first component is either the currently executing
loop until an exception is raised. On each iteration of the inner loop, closure or a blocking system call. System calls are the interface be-
the sender sends the first pending message to the other endpointween threads and the rest of the host. System calls include those re-
(private_send) then waits for the subsequent acknowledgement lated to the store (e§C_Assign), locks and condition variables (eg
(private_recv). SC_Mutex_Lock), the filesystem (e§C_File Write), and network



reduce_raise (cl,fs) = transmutex (h,tid,call) = case call of

case fs of [] — NONE || f::fs — ( SC Mutex_Create — (
case f of let 1 = free (FDOM h.m) in
TryWith(Wrap(Hole),Wrap(Clo(cl2))) — ( let m’ = FUPDATE h.m (1,NONE) in
case push_env cl of Raise(Wrap(cl)) — [(h with <] m:=m” [|>, SCRet(mk_con "Mut" 1))])
SOME(c12,App(Wrap(Hole),Wrap(Clo cl))::fs) || SCLock(l) — (
|| - — NONE) option_case [] (M x. case x of
|| - — SOME(cl,fs)) NONE — (
(* acquire the mutex *)
reducenonval (cl,fs) = let m’ = FUPDATE h.m (1,SOME tid) in
let add-fs = A (cl,f). (cl,f::fs) in [(h with <| m:=m’ |>, SC-Ret unit)])
let new.cl_fs push_env_cl = case push_env_cl of || SOME _ —

App (Wrap(cll),Wrap(cl2)) —

(* mutex owned by another thead *)
SOME(c12, App(Wrap(Clo(cll)),Wrap Hole))

Il LetVal (x,Wrap(cll),Wrap(cl2)) — (FLOOKUP h.m 1))
SOME(cl1l, LetVal(x,Wrap Hole,Wrap(Clo(cl2)))) || SCUnlock(l) — (
|| While (Wrap(cll),Wrap(cl2)) — ( option_case [] (\ x. case x of
let cl’ = mk.cl (LetVal(".",Var"do",Var"while")) (* mutex is not held *)
[("do",cl2); ("while",c1)] in NONE — [(h,SC_Ret mutex_exception)]
SOME(c11,IfThenElse(Wrap Hole,Wrap(Clo(cl’)), (* mutex is held *)
Wrap(Clo unit)))) || SOME tid’ — (

[ if tid = tid’ then
(* we hold the mutex, so unlock it *)
let m’ = FUPDATE h.m (1,NONE) in
[(h with <] m:=m’ [>, SCRet unit)]

else
(* mutex owned by another thead *)
[(h,SC_Ret mutex_exception)]))
(FLOOKUP h.m 1))
I - — 1

in

reduceval (cl,fs) = ...

reduce (cl,fs) =
let e = cl_toe cl in
if is_Raise e then reduce.raise (cl,fs)
else if is.val e then reduceval (cl,fs)
else reducenonval (cl,fs)

Figure 7. Host mutex transitions (HOL)

Figure 5. OCaml reduction (HOL)

msg-trans ((quad:quad), (msg:msg)) (n:net) =

host = <] let (il1,pl1,i2,p2) = quad in
cs : (connectionid,connection)finite map; let hid = i2 in
ts : (threadid,thread)finitemap; let hl = FLOOKUP n.hs hid in
s : store; case hl of
m : (mutexid,threadid option)finitemap; NONE — {}
w : condition set; || SOME(HDead .) — {}
f : filesystem || SOME(H-Alive h) — (
[> (* expected connection state, given msg *)
let st = case msg of
. SYN — LISTEN
Figure 6. Host type (HOL) [| SYNACK — SYN_SENT
|| ACK — SYN_RECV
. . . . . || DATA _ — ESTABLISHED
communication (e§C_Listen). Finally thetrans_t function ties in
these components together to give the transitions for a thread. (* relevant (connectionid,connection) pair *)
let cidc = get_cidc quad st h.cs in
trans_t t = case (t:thread) of (* updated connection and new messages *)
(TRun(cl),fs) — (case dest_Call (cl_to_e cl,fs) of let g (cid,c) =
NONE — (OPTION.MAP (M (cl,fs). (T_Run(cl),fs)) let quad’ = rev_quad quad in
(reduce (cl,£s))) let (c’,msgs) = case msg of
|| SOME(call,fs) — SOME(T-Block(call),fs)) SYN —
|| (T_Block(call),fs) — failwith NONE "trans_t" (c with <| st:=SYN_RECV |>, [(quad’,SYNACK)])
|| SYNACK —
The hostIn Fig.[6 the typenost includes threads, a store, a set of | e it <l STSESTABLISHED |2, [(quad”, ACOD)
mutexes and condition v_ariables, a filesystem, anql a set qf network (c with <| st:=ESTABLISHED  |>,[])
connections. The behaviour of the host is also defined using small- || DATA(ss) —
step operational semantics; an excerpt describing mutex transitions . (c with <| in:=(c.in++[ssI) |>,[D)
H H in
appears in Fig.[7. . o . ((cid,c’) .msgs)
The network A network consists of hosts communicating using in ,
TCP/IP. As mentioned previously, the model assumes a thin mes- ("t‘_’PdatEd “f}tw"rk “)
. . option_case
saging layer on top of TCP/IP that allows hosts _tc_) communicate us- (set_eta o cmsgs.inn n (hid,HAlive h) o g)
ing strings rather than a byte stream. The transitions of the network cido)

consist of transitions of host threads, transitions where a connec-
tion on the host sends a message to the network, transitions where
a message is received from the network, and transitions represent-
ing host and connection failure. An excerpt is given in Fig. 8.

Figure 8. Network transitions for messages received (HOL)

P . same way as this abstract queue. Formally an abstraction function
4. Verification overview maps concrete implementation states to abstract queue states. Every
In Sectionl 5 an abstract model of a queue is defined. Informally transition of the implementation must map, via the abstraction
the OCaml implementation is said to be correct if it behaves in the function, to a transition of the abstract queue.



The proof is factored into an abstraction function from the con- 2bp-host = <| b:bool; ss:string list |>
crete OCaml implementation to an intermediate specification, and app net = <|
a further abstraction function from the intermediate specification s  : abp_host;
to the abstract queue. The composition gives the single abstraction msgs : (bool#string) list;
function we seek. In Section 6 this intermediate specificationis de- | zzgfl‘ﬁtst
fined. It captures the communication protocol used by the queue, |, '
which is a version of the alternating bit protocol (ABP). The func-
tion from the ABP to the abstract queue is also defined, but the ablz;}za‘:fs*:;“f;rre;d“n;ak:esa nos bcasllsst;i‘:ig?:;)
standard proof that it is an abstraction function is omitted. The in- ("1 with <| s:=s0 with <| ss:=ss > 15 A
teresting part of the verification involves the abstraction function (n’=n® with <| s:=s® with <| ss:=(ss++[s]) |> [>)) V
from the implementation to this intermediate specification. Defin-  (* a msg moves to the network *)
ing this function is straightforward because the states of the imple- (@ =n0 with <| s:=s§ with <| b:=b; ss:=(s::ss) [>;

. . X msgs:=msgs 1>) A
mentation and the ABP are closely related: the OCaml code is @  (;'_ng with <| s:=s0 with <| b:=b; ss:=(s::ss) |>;
direct implementation of the ABP. The main proof obligation is to msgs:=(msgs++[(b,s)1) [>)) V
check that this function is indeed an abstraction function. Thisisan  (* an ack for previous msg is received *)
. . . ((n =n® with
invariant property, that is, a property of.aII reachaple states. | Sims0 with <| bizh |>; acks:=(-b::acks) [>) A
We examine all reachable states using symbolic evaluation. The ;- ¢ uith
reachable states are too complicated to use symbolic evaluation <| s:=s® with <| b:=b |>; acks:= acks [>)) Vv
directly, so we use rely/guarantee to rephrase the transition system (* an ack for current msg is received *)
from the point of view of some arbitrary thread Whereas the (@ =n0 with
L . X . . <| s:=s0® with <| b:= b; ss:= ss [>; acks:=(b::acks) [>) A
original system used an interleaving model of concurrency, inthis |, ¢ with
new system, steps daf alternate with steps of interference from <| s:=s® with <| b:="b; ss:=TL ss |>; acks:=( acks) |>))

other threads, the host, and the network.

We are now in a position to execute through a trace of the system
from the point of view of a threatl There are two possibilities for ~ abp-trans n n’ = 3 n8 xs ys zs.
t. Either it is the active management thread, or it is some other ~2bp-trans.sender n n’

.. . .V abp-trans_receiver n n’
user thread. If it is the active management thread, the thread state iS \, '+ host or connection failure, transient messages Iost *)

abp_trans_receiver n n’ = ...

largely known, eg for the sender endpoint it is the functiender, ( (n =n0 with <| msgs:=(xs++ys++zs) [>) A
with a symbolic value for the; parameter. In this case, we can (n’ = n® with <| msgs:=(xs++2s) 1>))
execute the code, checking the reachable states as we go.

The other possibility is that is a user thread. There are two Figure 9. Alternating bit protocol (HOL)

further possibilities. Either the user thread calls a queue API

method, or it executes some arbitrary user code. For each queue

API method, the state of the threads again largely known: it internal functioning of the queue, including the details of how the
is the code for the queue method itself. As before, we execute Message makes its way from the sender endpoint to the receiver
the code, checking each state in turn. Verification ends when the endpoint.

method returns to user code. For a transition involving arbitrary

user code, queue resources are private and inaccessible, saghe stag, The altemating bit protocol

of the queue is unchanged. The queue endpoints use a version of the alternating bit protocol

e L. (ABP) to communicate. The ABP is described|in [13]. The proto-
5. Abstract specification col can be verified independently of the implementation, so we in-
The abstract queue is formed by concatenating the pending mesdroduce an intermediate system between the abstract specification
sages at the sender endpoint (as recorded on the host filesystem) tend the concrete implementation which captures the ABP. This sys-
those at the receiver endpoint, taking care to avoid duplicate mes-tem is defined in Fig. 9. The relationship between the ABP and the
sages. The abstract specification of a queue is straightforward. abstract queue is expressed as an abstraction function.

abstract_queue_trans xs xs’ = 3 msg msgs. abp_-to_abstract_queue n =
(* msg appended to end *) n.r.ss++(if n.s.b=n.r.b then TL n.s.ss else n.s.ss)
( (xs =msgs ) A
(xs’=msgs++[msg])) V The abstraction function takes the pending messages at the
(* msg removed from front *) receivern.r.ss, and appends the pending messages at the sender,

( (xs =[msg]++msgs) A

(xs8'= 15gs)) n.s.ss to form the abstract queue. If thevalues at the endpoints

are equal, then the message at the head of the sender's queue

How is this a useful specification? In the simplest scenario, user has already been accepted onto the receiver's queue, and as a
code establishes a send queue ardds a messagesg to the result the message is omitted when forming the abstract queue.
receiver endpoint. During the executionseind, themsg is written The proof that this abstraction function respects transitions uses
to the log file on the sender endpoint. The change to the sender’sinductive reasoning to establish protocol correctness, in the style of
filesystem translates, via the abstraction function, to a change in Paulson [20]. Because it is a well understood technique, the details
the abstract queue, so that the abstract queue now comntsins of the proof are omitted, and inductive reasoning about protocol
On the receiver endpoint, user code establishes the correspondingorrectness is not discussed further.
receive queue and thereeks at the contents. eek returns, it is How does the ABP relate to the OCaml implementation? The
because the head of the pending messages on the receiver endpoieindpoint state in the ABRB andss, corresponds to the endpoint
was non-empty. The head of the pending messages correspondsstate in the implementatioi, andmsgs, as recorded on the host
via the abstraction function, to the head of the abstract queue.filesystem. Thansgs and acks at the ABP level correspond to
Since the front of the abstract queue is the messagethepeek transient messages, on the network, in connection objects on hosts,
must returmisg. This reasoning is completely independent of the and even in the active management threads before pending changes



to state have been logged to disk. Thus, a connection failure mayinterfere with the thread executing the function. Rely/guarantee
result in messages being lost from the network, but messages in thestyle reasoning can be used to rephrase the transition systems so
connection object on the receiving host, and in the active thread, that every step of the thread executing the function is followed by a
remain. Similarly, a single endpoint failure still leaves messages single “rely” step which represents interference from other threads.
on the network and on the other endpoint that can be received The cost of this transformation is that the corresponding “guaran-
by that endpoint’s active thread. For space reasons, details of thetee” of the thread in question must be show to hold at each step.
abstraction functionabstract from the implementation to the  gympolic executionSymbolic execution is used to explore the set
ABP model are omitted. ) N of reachable states. A reachable state lies at the end of a finite se-
The main property we want to prove is that transitions of the quence, or trace, whose head is a start state, and whose consecu-
OCaml implementation, when mapped by the abstraction function, tjve states are related by the transitions of the system. Symbolic

are respected by the ABP. Formally we have the invatiantmain execution works with such traceswherep,, is a symbolic repre-
below. This invariant is parameterized inys, which records infor-  ~ sentation of the system at steplt is important to note that these
mation such as the quad for the queue that we are interested in.gympolic states are characterized by arbitrary HOL formulae. Each
Where this invariant is used, the stateis a successor af. of the positions in the trace is dealt with in turn, using information
invmain nps n n’ = aboutp,, to derivep;, 1.
let trns = RC abp_trans in (* reflexive closure *) If the system is non-deterministic, ie there is more that one
let abstrct = abstract nps in successor state, then there is a corresponding branch in the proof.
trns (abstrct n) (abstrct n’) In fact, a network involving a queue is highly concurrent and

This invariant is further decomposed into several invariants cov- Non-deterministic, so rely/guarantee is used to mitigate this non-

ering common situations. For example, the case where a thread orfeterminism: as mentioned previously, every step of a thread is
the sender endpoint takes a step is dealt with by the following in- ollowed by a step representing interference from other threads and

variant. The parameters records information about the endpoint, "€ environment. o . .
For exampleps. tid is the thread id of the active management Loops and recursion are handled using induction. Typically,

thread. traces are allowed to start in any state that may recur, and before
symbolic execution commences, there is an outer induction on the

invmain_sender ps h h’ = length of the trace. If a state recurs as the head of some suffiaf
let trns = RC abp-trans_sender in (* reflexive closure *) p, the induction hypothesis is invoked to deduce that the invariant

let abstrct = abstract.sender_to_abp-net ps in

trms (abstrct h) (abstret h') holds on the remainder of p.

Auxiliary variables and Hoare-style assertionsHistory variables

7. Proof techniques and their integration [15] are us_ed to record facts about pre_vioqs states. For example,

_ . . e ) a proof might note the value af,,, which is later used when
This section descrlb_e_s sgveral existing proof te(_:hnlques, how theyexaminingpmM. At its simplest,p,,, is used to determing,, ;1.
were used in the verification, and how they were integrated together gince the whole trace is directly accessible at any point in the proof,
on top of the operational foundation. prophecy variables can also be used freely: when examining
Basic setupAt the heart of the operational approach to verifica- one is free to case split on the valuemwf ... If, as is often the
tion is symbolic evaluation. Program execution deals with ground casen is not known exactly, one can case split on the firstuch
terms. Symbolic evaluation deals with parametric terms, where that some useful property holds ofp..,+.. Prophecy variables are
subterms are replaced by variables (logical, not program). While not used in this work, but history variables are used extensively.
ground evaluation can enumerate the reachable states of a particu- Hoare-style assertions|[7] are used in a similar way to history
lar instance of a program, such&sct 5, symbolic evaluation can  variables. Rather than record the exact valiieof a previous state,
deal with the reachable states of all possible instances of a programthe assertiorP(p,,,) is established, wher® is some predicate of
such asfact n. interest. This information is used at some later stage, typically to

Symbolic execution can be automated fairly easily (although the derive some further assertiaf (p,,+1), which is itself used to
current implementation in HOL4 is rather slow). This affects the derive P>(pm+2), and so on. In Section 8 there is an example of
structure of proofs: rather than describe the behaviour of a func- the use of history variables and Hoare-style assertions.

tion in a way that echoes the operational §emantiCS, we can simply |nvariants Invariants are properties which hold of every reachable
execute the function. For example, considerianrement func- state. As an example, the following invariant describes how the

tion that takes a mutable variable and increments its value by one.state of the queue in memory relates to the state of the queue as
The behaviour ofincrement as given by the operational seman-  yecorded on the host filesystem.
tics cannot be abstracted in any meaningful way. Such functions are
handled directly rather than by separating out their properties as ainvmendisknone ps h = .
lemma. In the case of the queue, the functieksjueue, init and oA - ‘c‘i‘?m];q“e“e*"ffft ps b 18
save are ||ke thlS et q2 = disk_queue_o oSt ps in
The queue code is structured into functions, some of which are  (h.m ’ ps.lock = NONE)
part of the queue API, and some of which are internal to the queue =~ — ((al.msgs,ql.b) = (q2.msgs,q2.b))
itself. It is natural to structure the proof similarly, and so the bulk . . . . .
of the verification consists of separate lemmas, with each lemma. The variableps . Lock identifies the queue lock. Given this, the

corresponding to a particular function in the code. This makes !nvarlant may be paraphrased “if the queue lock is not held, then the

the proof modular, and, since the verification of each function is In-memory quedﬂeand the on-disk queue are the same”. Because

independent of the others, one can hope that the effort scales withthe queue code contains data races, a further invariant is required to
. characterize the relationship between the in-memory and on-disk
the number of functions. tati hen the lock is held b thread
Each function is verified by symbolically executing it. Global representations when the lock 1s held by a user thread.
invariants are assumed to hold initially, and verification must €S- iny_mem disk_some ps h =
tablish that they hold at successor states. The operational semantics
uses an interleaving model of concurrency, and other threads may Rather, the fieldssgs andb of the relevant queues.




let ql = mem queue of host ps h in interference. The reachability of this system is at least that of the

let g2 = disk.queue.of-host ps h in original. Thus, any invariant of this system is an invariant of the
V tid. tid IN FDON h.ts A - (tid = ps.tid) original. Crucially, t_hls app_roac_:h at_)str_a_cts from the details of the
. (h.m ' ps.lock = SOME tid) other threads, making verification significantly more manageable.
— (ql.msgs = q2.msgs) V (3 msg. gl.msgs = q2.msgs++[msg]) Linearizability Linearizability [6] is the requirement that an ac-

tion composed of multiple atomic actions appear to happen at a
single point in time. The use of an abstraction function from a
concrete implementation to an abstract specification often requires

The other interesting invariant relates to encapsulation and the
contents of the store, and is described in Section 9. Further invari-
ants deal with wellformedness conditions. All host invariants are X . R, . A 8

reasoning about linearizability, since an atomic action of the spec-

combined in a single invariaithv_h. o ) f ; ; :
. . ification may require several steps in the implementation. In this
Rely/guaranteeRely/guarantee [9] is a core technique for reason- paper, linearizability is dealt with using invariants, auxiliary vari-
ing about concurrent systems. The standard reference is JA12s' P pjes  Hoare-style assertions, and rely/guarantee. The proof of the
thesis [9]. Jones helpfully maintains an annotated bibliography on correctness of the code with data races in Section 8 illustrates lin-
rely/guarantee onlife Given a particular thread of interest, the earizability in detail.
idea is to characterize the interference that may be caused by othe
threads. As an example, the following rely condition describes how
interference affects the value of the in-memory list of pending mes-
sages at the sender endpoint.

Iintegration The verification is only made possible by using these
techniques in combination. The key to integration is to express all
the techniques using the core techniques of symbolic evaluation
and invariants.

rly msgs-non-empty ps tid h h’ = Symbolic execution is used to explore the state space of the sys-
let q = mem.queue.ofhost ps h in tem. During symbolic evaluation, Hoare-style assertions are used to
let q’ = mem.queue.of-host ps h' in abstract from the details of a particular state, and history variables
(tid = ps.tid) are used to record details of previously seen states.
— ~ (q.msgs = [1) The property that the OCaml implementation refines the ABP
— 7 (a’.msgs = [ID A (HD q’.msgs = HD q.msgs) specification is also an invariant: recall that the implementation re-

fines the ABP specification if, for every reachable implementation
state and every transition from that state there is a corresponding
transition of the specification.

Rely/guarantee states that for a given thredad and for all
reachable implementation host statgsany successor stafe’
arising from a transition of a threadd’ #tid satisfiesrly tid
h h’. Again, this is an invariant of implementation statesAs
o o with refinement, the invariant makes reference to successor states.
thread. The rely condition can therefore be paraphrased: "If you There are therefore three different kinds of invariant. For each

are the active management thread, you may assume tisgsfis ¢ it fathreadid t th N d
non-empty and other threads take steps and so interfere with thelransition ot a threadid, we must prove the guarantee correspona-

system state, thensgs will still be non-empty, and moreover the ing to the rely, the correctness of the abstraction function, and the
head ofmsgs ’wiII be preserved”. If the queue’ correctly maintains other basic invariants. For example, the part of the verification deal-
the privacy of its internal data structures, then this is obvious from "9 With thesend queue API method involves the following typical

the code: user threads on the sender endpoint can call the queue Apgoal, parts of which have been omitted for clarity.
function send to add messages to the endrafys, but the active send_lemma p = V ps tid tid’ h h’.
management thread is the only one that can remove messages from --- (¥ variables are set appropriately *)
the front OfmSgS' : igzﬁ gz E’ A rlyh ps tid’ h h’ A invmain_sender ps h h’

A rely condition should be reflexive and transitive because it B
represents zero or more steps of interference. The aim is to prove that for any path if the last two stated
andh’ in the path arise as a transition of thread, then assuming
the basic invariant$nv_h hold of stateh, we must show that they
is_rly_gty (rly_msgs_non_empty ps tid) hold of stateh’ (inv_h ps h’), that the transition of threatlid

. . guarantees the relies of other threadsl’ (rly h ps tid’ h
There is no need to state the guarantee conditions separately. Ah’), and that there is a corresponding transition of the ABP model

A rely condition characterizes the interference caused by a
thread transition from a host to a hosth’. This rely condition
is parameterized by two variablgss andtid. The variabletid
is the thread identifier of the thread that may assume the rely
condition, whileps.tid identifies the active management thread
on the host. The conditionid = ps.tid implies that this rely is
trivial unless the thread identified hyid is the active management

is.rly gty rg = reflexive rg A transitive rg

rely conditionr:_ly is parameterized by the thread ident_ifta'ld. If (invamain_sender ps h h’). In this way, all techniques used in
the host state i&, and other threads take steps causing the state ¢ proof, including privacy (part ofnv_h), rely/guarantee, and
to change tdh’, then threadtid can rely on propertyly tid refinement, are cleanly combined.

h h’. Conversely, when threatlid itself takes a step from state
h causing the state to changeltd, it must be sure to guarantee
rly tid’ h h’ for all other threadsid’. There is an example 8. Dataraces
of this in the statement ofend_lemma below. Thus, if the thread Races on shared resources are dangerous, but they can be pre-
identifier is made explicit, then the rely and guarantee conditions vented using locks. For performance reasons, it is important to hold
become identical. This clarifies the often observed symmetry be- locks for the shortest time possible. The queue uses locks wherever
tween rely/guarantee conditions. shared state may be accessed concurrently, with one interesting ex-
What is the benefit of using rely/guarantee style reasoning? ception. In order to improve performance, theivate_send func-
Usually a thread executes in parallel with other threads. Instead of tion permitsq.msgs to be dereferenced outside the locked region
interleaving steps of other threads with those,adne can instead ~ (private_send is reproduced below). In the rest of this section,
interleave steps of interference. If the interference is reflexive and | discuss why this might cause problems, why it does not cause
transitive, then one can follow each steptafith a single step of problems in this case, and how this is handled in the proof.
Recall that the main property we are proving is that, from
2homepages.cs.ncl.ac.uk/cliff. jones/ftp-stuff/rg-hist.pdf a reachable state, every step of the implementation corresponds
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to a step of the alternating bit protocol. The possible problem
arises in the last line gfrivate_send, when a message is sent
to the network (in fact, its immediate destination is the relevant

Again, other threads may interfere, but the active thread can rely
onrly msgs_non_empty to ensure that the head @fmsgs is con-
stant. In fact, the head of the queue remains constant also because

connection object on the host). The alternating bit protocol requires the lock is held, indicating thatly msgs_non_empty is really only
that the message that is sent at this point is the first messagenecessary outside the locked region. This is related to the fact that

pendingat this point. However, the dereference of the head of the
pending messages$,ist.hd ( ! ( gq.msgs ) ), occurs some
steps before the message is sent. Potentially the hegdmsfys
could have changed in the intervening time, in which case the

the mutex and condition variable are used here primarily for inter-
thread communication, not to protect shared access to resources. At
4the lock is released. The conclusioniaf_mem_disk _none holds
immediately before the lock is released, &ov_mem_disk none

dereferenced value would not be current, and there would be noholds immediately after the lock is releasédv_mem_disk_some

corresponding step of the alternating bit protocol. The problem is
one of linearizability.
It is important to realise that evendf msgs were dereferenced

is trivially true because the condition is false. From this point on,
user threads may interfere, and the lock may be free, or taken by a
user thread. Howeverly msgs_non_empty guarantees that the

inside the locked region, the fact that the send occurs outside thehead of the list remains constant. At &,b and q.msgs have
locked region still causes problems. If both the dereference andbeen dereferenced. The only thread that can alter the value of

the send occur inside the locked region, then there is no problem.

q.b is the sender thread, which we are currently executing, and

However, depending on the size of the message, the send may takely msgs_non_empty ensures).msgs remains current. When the

a long time, and thus impact performance considerably.
Fortunately the code is correct as it stands. The function
private_send is executed only by the active management thread.
Although other threads may read and updatesgs, they can
only add messages to the end. Onceisgs is non-empty, the

send finally occurs, the lock can either be free, or held by one of the
user threads (nothing can make the lock be held by the active sender
thread). The invarianténv_mem_disk none, inv_mem disk_some
ensure that, regardless of whether the lock is held or not, the pre-
viously read valueg.b andList.hd ( ! ( g.msgs ) ) corre-

head remains constant until the active management thread itselfspond to the values currently on disk. There is thus a corresponding
removes it in response to a new acknowledgement received fromtransition of the alternating bit protocol respecting the abstraction

the other endpoint. Thus, it does not matter tatsgs is deref-

erenced some time before the send occurs since the value will

not change in the intervening time. The situation is only slightly

more complicated by the fact that the abstraction to the alternating

bit protocol uses the on-disk rather than in-memory queue. For-
tunately theinv_mem_disk none, inv_mem disk_some invariants

guarantee that the two representations are the same (or, at leas
that the head of the in-memory queue is the same as the head of th

on-disk queue, since a user thread may be callingl, which has

appended a message to the in-memory queue, but not yet logge

the results to disk).

The reasoning may be presented slightly more formally using
Hoare-style assertions. Because the invariamésmem_disk_none,
inv_mem_disk_some are involved in the reasoning, | also show how
they are preserved.

let private_send q =

1%

let _ = Mutex.lock g.lock in
2%

let _ = while ! ( q.msgs ) = [] do
Condition.wait q.cond q.lock done in
3%

let _ = Mutex.unlock g.lock in
4%

let msgs = [ string_of_bool ( ! ( gq.b

List.hd ( ! ( gq.msgs ) ) n

DADEH
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let _ = Message.send ( dest_Some ( ! ( q.fd ) ) ) msgs in

O in

At 1, the global invariant holds by assumption. In particular,
we restrict attention to the relevant part of the global invariant,
inv_mem_disk none and inv_mem_disk_some. At 2, the thread
has successfully taken the lock. Immediately prior to this step, the
lock is not held, so the condition of the invaridmiv_mem_disk_none

function.

9. Context, privacy and encapsulation

The queue is intended to be used as a library by other applica-
tions. It should behave correctly regardless of the context in which

{'t is called. This is achieved by keeping queue resources private. If

esources are private, then invariants on the resources can be en-
orced. In this work, resources are unforgeable referencessb ho

SHlate, typically store locations, mutex identifiers, condition variable

Identifiers and network connection identifiers. Even a thread iden-
tifier might be considered a resource, although in the current model
of OCaml there is no way to manipulate a thread via its identifier, so
whether thread identifiers are private or not is immaterial. The exact
nature of a resource is orthogonal to privacy concerns— nothing is
lost by considering all resources to be store locations.

The idea of privacy is very simple. A single resources
private to a functionf if, wherever it occurs, it is syntactically
within the body of f. For example, locatioioc i is private to
function A x. Loc i in App(\ x. Loc i, unit). In general
there may be more than one resource and more than one function.
For example, the queue API methods for the receiver all share the
same resources.

A resourcer may be private tof initially, but subsequently
may leakr to user code. Possible waysan leakr are by making
r accessible via shared store, or by returnirtg user code (either
normally, or during exceptional return). To ensure thaemains
private throughout an executiofi,must beprivacy-preserving. In
particular, f must not return- to user code (directly, or during
an exceptional return). In a single-threaded settjhgjust ensure
that » is not accessible via other locations in the store wifen
finishes executing. In a concurrent settifignust ensure that
is not accessible to other threads via other locations in the store

is satisfied, and the in-memory and on-disk queues are the sameat any point during execution. For the queue, resources are never
This is not altered by the lock being taken, so immediately af- accessible via other locations in the store. Thus, as far as privacy is
ter the lock is taken, the in-memory and on-disk queues are still concerned, verification must establish that the queue API functions
the same. Other threads may interfere at this point, but they guar-do not return private resources to user code.

antee not to alter (the shared parts of) the queue state while the OCaml can support notions of privacy for in-memory data struc-
lock is taken. Thus, while the lock is held, the conclusion of tures. However, the queue also uses the network and the filesystem.
inv_mem_disk _none remains trueinv_mem_disk_some is trivially External restrictions must be placed on how these are used by the
true since the condition is false, and this remains the case while thecontext. For example, no user thread should write directly to the
lock is held. At 3, the lock is still taken, ang msgs is non-empty. log files otherwise chaos might ensue.



The definition of privacy The first definition gives all subclosures  Resources remain private while executing user codghe follow-
of a closurecl, omitting those that match one of the functidins. ing lemma describes the case that arbitrary user code executes with
This is then lifted to contexts and framestacks in the obvious way. resourceses private to functionsns.

subcls fns cl = user_lemma = V tid h h’ t t’ fns res.
if cl IN fns then [] else cl::(case cl of Cl(e,env) — ... (* variables are set appropriately *)
FLAT (MAP (A (v,cl). subcls fns cl) env)) — " (3 £fs f arg.
f IN fns A (t = (TRun f,App(Wrap Hole,Wrap(Clo arg))::fs)))
A set of resourcess are private to a set of function&s if, — private_thread fns res t A private.store fns res h.s

when occurrences dis are removed, there are no occurrences of ~ — b’ IN set (trans-h-tidt h (tid,t))
rs — private_thread fns res t’ A private_store fns res h’.s

A (eval_res res h’ = eval_res res h)

privatecl fns rs ¢l =V r. r IN rs — ~ (MEM r (subcls fns cl))

Threadt is identified by thread identifierid. The first condi-
private fs fns rs fs = V r. r IN rs — ~ (MEM r (subcls_fs fns £s))  tion restricts thread to user code rather than (an application in-
volving) one of thefns. The inductive assumption is that the re-
privateclfs fns rs (cl,fs) = sources are private in both the thread statnd in the host store
privatecl fns rs cl A private-fs fns rs fs h.s. The next condition restricts’ to a successor df (within h,

Recall that thread state consists of a pair, where the secondthe thread making the transition ¥. The conclusion is that re-
component is a framestack, and the first component represents @0urces remain private in both the thread statend in the host

running thread evaluating a closure, or a thread blocking on a Storeh’.s, and moreover the value of any resource is unchanged.
system call. This lemma is proved by analysing all the possible cases for the

user code, and all the possible ways each case might evaluate.

private thread fns res t = Resources remain private after executing queue API functions

let rs = res_to_cls res in

case t of Recall that the proof consists of two cases: either arbitrary user
(TRun cl,fs) — privateclfs fns rs (cl,£s) code executes, or one of the queue APl methods executes. Prior
Il (T-Block call,fs) — to this case split, there is an outer induction on the length of the
pr;‘éi;:ézl)fnirsrﬁafeCcalsefncsalrls °Cf1 tracep, as described in Section 7. In the case that a queue API
Il sc Deref(l)p_) -~ (1 IN res.locs) method executes, resources are private to functions in the frames-

Il SCAssign(l,cl) — tack contexfs. The function executes, private queue resources may

" (1 IN res.locs) A privatecl fns rs cl be manipulated, and eventually the method returns a value to the

e user code contexs. Providing the method has not returned private
. . ) resources to user code, the remaining suffief p satisfies the in-
Store invariant Queue resources are never accessible from other y,ctive assumption that g} resources are private to the queue API

store locations, either while user code executes or while queue APl g ions. The inductive assumption is invoked to conclude that on
functions execute. This is captured by the following invariant. The ', the remainder of, the resources remain private.

definitionprivate_cl is first lifted to the host store.

private-store fns res s = 10. Proof skeleton, composing the fragments
let rs = res_tocls res in
V loc:loc. loc IN FDOM s — privatecl fns rs (s ’ loc) The previous sections detail the verification of the internal queue

inv_private_store ps h = function private_send, the queue API methpdepd, and ar_bi-
let res = ps.tores ps in trary user code. How are these separate verifications combined?
let fns = gfns ps in When we talk about verifying a function, we really mean veri-
private.store fns res h.s fying a function executed by a thread. Similarly, verifying arbitrary
. . . . . user code means verifying a thread executing arbitrary user code.
The invariant is checked while user code executes and while e ta5k of composing the verification fragments invoives assem-
queue API functions execute. Since the resources are private t0pjing the individual thread verifications into a verification of the
user code, there is no way user code can write them into the storep,qq;
(except by writing a queue API function itself into the store, but g host is more than a set of threads. Most of the components
this preserves privacy). For the queue API functions itis clear from ¢ the nost are passive, that is, they do not of themselves cause

the code that this invariant is satisfied. transitions to occur. The store is an example. Some parts of the host
Privacy verification Verification starts by considering an arbitrary  are active, such as the network connections. Network connections
thread, with resourceses private to functionsfns. In this work, cause transitions, but they do not directly affect threads— a thread

fns are the queue API functions. There are two cases. Either ahas to make an explicit system call to interact with a connection
function executes, or arbitrary user code executes. For arbitrary object. Some parts of the host are active and directly affect the
user code, by considering all possible cases, one can show that aftethreads. For example, a thread might be sleeping, waiting on a
a step of execution the resources remain private, and the state ofcondition variable, and the system may decide to wake the thread
the resources is unchanged. This is described in more detail below.up, even if the condition has not been signalledoreover, the
Since the proof is independent of the resounces and the set of system behaviour is not just the behaviour of the hosts. Clearly the
functionsfns, the result is OCaml metatheory and may be reused additional behaviours of the host and the behaviour of the network
in other verifications. are important; however, in this section we limit the discussion to
The second case arises when one of the queue API functionshost thread transitions only. Further composition steps treat the
fns executes. For each function, verification must establish that additional host behaviours and the network behaviour.
resources are not written to the store while the function executes,
nor returned to user code when the function finishes executing. The3 s is the reasomaits are wrapped iwhile loops. Modern implemen-
functions are specific to the code being verified, in this case the tationsmay not exhibit this traditional behaviour, but of course, iséfer to
queue, and therefore this part of the verification cannot be reused. assume they do.




We first define a state transition system whose reachability is at techniques, including symbolic evaluation and rely/guarantee, were

least that of the system we are interested in. used in the same way that they are here.
. o Hoare popularized the use of assertions for reasoning about pro-
sender_endpoint_thread_starts ps tid (int,h) = . . . . ,
let t = h.ts ’ tid in gramming languages [7]. Owicki and Gries extended Hoare’s work
let fns = gfns ps in to treat concurrent systems [19]. Since then, many variations on
let res = ps-tores ps in the original Hoare logic have been proposed. For example, a recent
(int = T) ) mechanization of a novel Hoare logic for recursive procedures and
A case tid = ps.tid of b ded d L . logic h b d
T — (t = sender.active_thread ps) unbounded nondeterminism s [16]. Hoare logic has been used to
|| F — (private_thread fns res t) reason about real languages such as Java [17].
sender endpoint.thread trans ps tid (int,h) Cint’,h*) = Completeness of the refinement approach is considered by Lam-
Tet 1 o G e b G TE,A) TIE LA = port and Abadi[[15]. The authors note that the technique of refine-
¢int’ = ~ int) ment is not new and point to the slightly earlier application of re-
A case int of . _ finement by Lynch and Tuttle [14] and even earlier work of Lam-
T — ((rly-h ps tid) h h' A invh ps h') port [11] and Lam and Shankar [10].

IF — (b7 IN set (transh-tidt h (tid,©)) In this work, linearizability arises because of the need to match

sender_endpoint_thread_sts ps tid = many implementation transitions to a single specification transi-
let s = sender-endpoint.thread-starts ps tid in tion. However, linearizability has been proposed as a form of spec-
let t = sender_endpoint_thread_trans ps tid in

ification independent of refinement| [6]. This avoids the overhead
of defining an abstract model; however, in this paper the abstract

The sender_endpoint_thread_sts describes transitions of  model (the alternating bit protocol) is also used to reason about
the network from the point of view of thread d. As usual, we use protocol correctness.

(s, )

symbolic execution to examine tracesf this system. The start Local reasoning, separation, privacy and encapsulation are
states sender_endpoint_thread_starts constrainpy. Recall currently areas of rapid growth in theoretical computer science.
thatps.tid is the active management thread. The first case split on The most popular approaches derive from Reynolds’ separa-
tid = ps.tid (from sender_endpoint_thread_starts) deter- tion logic [25]. Like its ancestor, Hoare logic, separation logic

mines whether we are executing the active thread, or a user threadhas been adapted in various directions, for example, to include
If we are executing the active thread we use the verification of rely/guarantee style reasoning [28]. A more operational approach
the sender function. Otherwise we are executing a user thread. to local state and privacy has been pursued by Pitts and others

The start states are further constrainedplbyvate_thread fns [22][21].
res t. Recall that this predicate, defined in Sectidn 9, says that
resourceges are private to queue API functiofsis in threadt. 12. Conclusion and future work

Then either the currently evaluating closure is one of the functions
fns or it is not. If it is not, then arbitrary user code executes, and
we invoke the metatheory from Section 9. Otherwise we case split
on which of the queue API functions frofins the closure is and
invoke the appropriate queue API method verification.

This work presented the operational approach to verification, in-
cluding details of how it was applied to verify a persistent queue.
The mechanization involves around 3000 lines of definitions, and
3000 of proof, representing approximately 6 months of effort. The
proof scripts take about an hour to process, with most of that time
spent evaluating symbolic expressions.

11. Related work The proof was constructed to suit mechanization. Essentially all
Operational semantics is a standard technique for defining pro-the proof obligations were reduced to checking a single invariant
gramming languages and proving metatheory, but is less often usedof the reachable states of a transition system. Symbolic evaluation
directly as a basis for program verification. An example of a large was used to generate the reachable states, and invariant checking
operational semantics is the formal description of TCP/IP[[27, 2]. was based on HOL4’s rewriting and simplification.

Symbolic evaluation is a natural counterpart to operational seman-  The heavy reliance on symbolic evaluation had advantages and
tics. For example, the work on TCP/IP involved significant testing disadvantages. The main advantage was that mechanization was
using symbolic evaluation inside a theorem prover [3]. fairly straightforward. In the common case where a single step of

One researcher who has advocated reasoning directly about theevaluation does not affect the rest of the host state, all invariants are
operational semantics is Moore, although he explicitly recognizes proved automatically. This makes the scripts robust against trivial
that this approach has only recently become feasible: “had therechanges to the queue code and the OCaml semantics. The main dis-
been decent theorem provers in the 1960s, Floyd and Hoare wouldadvantage of this approach is the slow speed of symbolic evaluation
never have had to invent Floyd-Hoare semantftsiis work [12] in HOL4. Much effort, was spent trying to address this problem,
focuses on Java programs, which have first been compiled to byte-both in terms of writing specialized tactics and in reshaping the
code. Correctness properties are phrased as properties of the byteproof. Even so, it can take 10 seconds or more to execute a single
code, and reasoning occurs above the bytecode, not above the origstep of the system (including automatically discharging invariants),
inal Java program. The examples treated, such as an “add one” pro-and a single queue API function may require hundreds of steps to
gram and a Java function that implements factorial, are significantly execute. Thus, it takes a long time to construct an initial proof, and
simpler than the work presented here. to rework existing proofs. Moreover, waiting for symbolic evalu-

A rare example of operational reasoning applied to a high-level ation to complete results in low productivity for the human being
language is the work of Compton|[4], who verifies a version of driving the proof process. An obvious conclusion is that to make
Stenning’s protocol for a restricted model of Caml and UDP. This the operational approach more feasible would require investment in
work is similar, but again much simpler, than that presented here. theorem prover infrastructure, particularly in the areas mentioned.

The most directly related piece of work is the author’s ver- Several aspects of the case study make it particularly suited to
ification of Peterson’s algorithm for mutual exclusion [26]. This the operational approach. The abstract queue in Section 5 has a
work was simpler than that presented here, but several of the corenatural operational specification, as does the intermediate model
of the alternating bit protocol. At the implementation level, opera-
4http://www.cs.utexas.edu/users/moore/best-ideas/vcg/. tional semantics is the standard for defining realistic programming
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languages such as OCaml, and can also be used to describe the restcludes a definition of the OCaml type system and a proof of type
of the system, including the hosts and the network. The OCamlim- soundness. The verification described above makes no use of types,
plementation is a direct refinement of the alternating bit protocol, although type information can make verification easier. It would
and checking the existence of such a refinement is well suited to also be good to incorporate other static analyses, not only those
mechanization. The techniques that were needed in the verificationbased on types, into this framework.
were all easily expressed and integrated above the operational se- The current model of the host includes several unrealistic as-
mantics. Furthermore, new techniques, such as the simple approaclsumptions. For example, the model assumes an infinite number
to privacy and encapsulation, could also be developed above theof file descriptors, none of which are ever re-allocated. Conse-
operational foundation. For this case study at least, operational rea-quently, errors involving file descriptor exhaustion, wrap-around
soning was a natural approach, which proved flexible, and imposedor re-allocation are not addressed in this work. A long term aim
little overhead on the proof process. Presumably similar systemsis to make the model of the host more detailed and realistic. This
could be handled in a similar manner. should be possible without modelling the operating system or the
This work addresses the question of what is needed to reasonnetwork stack in detail (although these make interesting comple-
about systems that have been defined operationally. Since operamentary projects).
tional semantics is the standard for formally defining complex sys-  The model of networking is based on the author’'s previous
tems, this is a natural and important question. Since most verifica- work [26], although there is no formal connection. The current
tion is not based directly on operational semantics, it is natural to model does not fully reflect the behaviour of TCP/IP; for example,
wonder why. Hopefully this work demonstrates some of the poten- it omits certain rare behaviours such as simultaneous connection.
tial of operational reasoning, as well as indicating to some extent The previous work includes these behaviours, but is not abstract
where problems lie. There is much scope for future work. enough: the size of the specification alone makes it difficult to

More complex examplesThere are many exciting opportunities ~ US€ in verification. The p_revious work neec_is to be revisited and
for verifying implementations of interesting algorithms. For ex- abstracted even further with an eye to replacing the current network
ample, Amazon currently use an implementation of the Paxos al- model.

gorithm as a core part of their network infrastructure. Reports Alternative queue implementationsThe current OCaml imple-
suggest that most errors are errors introduced while refining the mentation of the queue could be improved in several ways. Rewrit-
Paxos specification to production code. Using the techniques pre-ing the whole log file every time state changes is clearly unnec-
sented here, | believe that implementations of such complex algo- essary. A better approach would be to store individual updates in
rithms are now well within reach of mechanized verification. Other separate files. Lock contention could be reduced by splitting the
interesting targets are concurrency libraries, such as Doug Lea’sendpoint queue in half, with API functions accessing one half, and
java.util.concurrent. the active management thread accessing the other. Only when the

Other languagesAlthough this work treats the case of two OCaml  half used by the active thread becomes empty would a lock need
endpoints, the queue could just as easily have been written in, say,ffo be taken, and the contents of the other half copied over. A fl_nal
Java. The model of OCaml would be replaced by a model of Java, improvement would be to send more than one message at a time.
but the rest of the model would remain unchanged. Moreover, the This would involve changing from an implementation based on the
ABP model and abstract specification are language neutral, and the@ltérnating bit protocol to one based on the sliding window pro-
notion of privacy would be the same, so the general structure of the tocol. Unfortunately the sliding window protocol is significantly
proof should be preserved. Given a reasonable definition of the Javamore complicated to work with because it requires restrictions on
operational semantics, it should even be straightforward to treat ath€ rate at which messages are sent, in order to avoid wrapping

queue where one endpoint is implemented in OCaml and the otherthe message identifier too quickly. Indeed, despite lots of attention,
in Java, giving a verified proof of interoperability. the sliding window protocol has yet to be verified satisfactorily,

Otherapproaches 0 privacyThe approach o pivacy and encap- _15,"eacid Precie condilonson he e nal messages are sen.
sulation presented here is based on restricting access to (mutablegessages can be r'eordered whereas ?he underl)rl)ing TCP used here
resources. In a typed setting it is more natural perhaps to restrict ac- uarantees that no message‘s are reordered, so that it should be pos
cess to values through types ie by using abstract types or signature ible to avoid issues of identifier wrap-arouna altogether

to hide type information. There are obvious similarities between . . ' )
these approaches. The approach of this paper restricts resourcekiveness This work treats safety properties of the queue, but it
to appear only within a known set of functions. The type-based would also be good to tackle liveness. Although the use of locks
approach allows resources to appear anywhere, but only within aiS fairly elementary (there is only one lock per queue) liveness is
known set of functions can they be accessed and manipulated. Thestill non-obvious. Even during normal operation, liveness depends
type-based approach is supported by the language itself, which isO" invariants about t_he way the net_work is us_ed. In _the presence of
one reason it is more natural. To support the type-based approacH“OSt a_n_d network failure, liveness is not obvious. Liveness should
would require a model of OCaml modules, together with details Pe verified.

of the module type system, so the initial overhead is higher. The Denotational semanticsin the functional programming commu-
higher initial overhead was the reason that the type-based approachity, there is a tradition of algebraic reasoning, using equalities
was not taken here. However, modelling these parts of OCaml is between (purely functional) program fragments. The absence of
certainly a long term aim of this work. side-effects and the restriction to terminating functions justifies this

Models The models of OCaml, hosts and the network are abstract, form of reasoning. Higher-order theorem provers, such as HOL4
but reasonably realistic. For example, the control messages on the2d Cog, directly support such equational reasoning for their own
network are modelled directly on those used by TCP/IP. However, internal (pure) languages. O_peratlor_1a| reasoning stresses the step-
the models could be improved further. by-step nature of computation, which handles side-effects well,
The model of core OCaml should be linked to that of Owens bPut is ill-suited to this form of reasoning. For the pure fragment
[18]. That model was not used directly because it is based on of OCaml it is important to support such reasoning. There_fore, a
flat expressions, whereas this work required a more structured!0ng term goal is to reason about the theorem prover equivalents
representation based on closures and framestacks. Owens’ worlof structures such as lists, and then to transfer the results directly



to the OCaml code. For example, in the pure fragment of OCaml [14] N. A. Lynch and M. R. Tuttle. Hierarchical correctnesegfs for
we can already prove that list append is associative. The next step  distributed algorithms. Technical Report MIT/LCS/TR-387T,

is to show that any equality concerning lists, that is established in 1987.

the theorem prover, is valid for the purely functional fragment of [15] M. Abadi and L. Lamport. The Existence of Refinement Mapgin
OCaml. This avoids the need to transfer results individually, in- In Proc. of the 3rd Symposium on Logic in Computer Science, pages
stead making the full range of HOL equalities available to reason 165-175, Edinburgh, July 1988. IEEE.

about OCaml code, thereby providing strong support for algebraic [16] T. Nipkow. Hoare logics for recursive procedures anbaumded
reasoning. nondeterminism. In J. Bradfield, edit@pmputer Science Logic
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