
A rigorous approach to networking:

TCP, from implementation to protocol to service

Tom Ridge1, Michael Norrish2, and Peter Sewell1

1 University of Cambridge
2 NICTA

Abstract. Despite more then 30 years of research on protocol specifi-
cation, the major protocols deployed in the Internet, such as TCP, are
described only in informal prose RFCs and executable code. In part this
is because the scale and complexity of these protocols makes them chal-
lenging targets for formalization.

In this paper we show how these difficulties can be addressed. We
develop a high-level specification for TCP and the Sockets API, expressed
in the HOL proof assistant, describing the byte-stream service that TCP
provides to users. This complements our previous low-level specification
of the protocol internals, and makes it possible for the first time to state
what it means for TCP to be correct: that the protocol implements the
service. We define a precise abstraction function between the models
and validate it by testing, using verified testing infrastructure within
HOL. This is a pragmatic alternative to full proof, providing reasonable
confidence at a relatively low entry cost.

Together with our previous validation of the low-level model, this shows
how one can rigorously tie together concrete implementations, low-level
protocol models, and specifications of the services they claim to provide,
dealing with the complexity of real-world protocols throughout.

1 Introduction

Real-world network protocols are usually described in informal prose RFCs,
which inevitably have unintentional ambiguities and omissions, and which do
not support conformance testing, verification of implementations, or verification
of applications that use these protocols. Moreover, there are many subtly dif-
ferent realisations, including the TCP implementations in BSD, Linux, WinXP,
and so on. The Internet protocols have been extremely successful, but the cost is
high: there is considerable legacy complexity that implementors and users have
to deal with, and there is no clear point of reference. To address this, we have
developed techniques to put practical protocol design on a rigorous footing, to
make it possible to specify protocols and services with mathematical precision,
and to do verified conformance testing directly against those specifications. In
this paper we demonstrate our approach by developing and validating a high-
level specification of the service provided by TCP.

Our specification deals with the full complexity of the service provided by
TCP (except for performance properties). It includes the Sockets API (connect,

listen, etc.), hosts, threads, network interfaces, the interaction with ICMP and
UDP, abandoned connections, transient and persistent connection problems, un-
expected socket closure, socket self-connection and so on. The specification com-
prises roughly 30 000 lines of (commented) higher-order logic, and mechanized
tool support has been essential for work on this scale. It is written using the
HOL system [11]. The bulk of the definition is an operational semantics, using
idioms for timed transition relations, record-structured state, pattern matching
and so on.

We relate this service-level specification to our previous protocol description
by defining, again in HOL, an abstraction function from the (rather complex)
low-level protocol states, with sets of TCP segments on the wire, flow and con-
gestion control data, etc., to the (simpler) service-level states, comprising byte
streams and some status information. This makes explicit how the protocol im-
plements the service.

The main novelty of the approach we take here is the validation of this ab-
straction function. Ideally, one would prove that the abstraction relationship
holds in all reachable states. Given the scale and complexity of the specifica-
tions, however, it is unclear whether that would be pragmatically feasible, es-
pecially with the limited resources of an academic team. Accordingly, we show
how one can validate the relationship by verified testing. We take traces of the
protocol-level specification (themselves validated against the behaviour of the
BSD TCP implementation), and verify (automatically, and in HOL) that there
are corresponding traces of the service-level specification, with the abstraction
function holding at each point. Our previous protocol-level validation, using a
special-purpose symbolic evaluator, produced symbolic traces of the protocol-
level specification. We now ground these traces, using a purpose-built constraint
solver to instantiate variables to satisfy any outstanding constraints, and use a
new symbolic evaluator to apply the abstraction function and check that the re-
sulting trace lies in the service-level specification. By doing this all within HOL,
we have high confidence in the validation process itself.

Obviously, such testing cannot provide complete guarantees, but our experi-
ence with the kind of errors it detects suggests that it is still highly discriminating
(partly due to the fact that it examines the internal states of the specifications at
every step along a trace) and one can develop useful levels of confidence relatively
quickly.

In the following sections, we first recall our previous protocol model (Sect.
2), before describing the new service-level specification (Sect. 3) and abstraction
function (Sect. 4), giving small excerpts from each. We then discuss the validation
infrastructure, and the results of validation (Sect. 5). Finally, we discuss related
work and conclude.

2 Background: our previous low-level protocol model

Our previous low-level specification [5,6] characterises TCP, UDP and ICMP
at the protocol level, including hosts, threads, the Sockets API, network inter-

faces and segments on the wire. As well as the core functionality of segment
retransmission and flow control, TCP must handle details of connection setup
and tear-down, window scaling, congestion control, timeouts, optional TCP fea-
tures negotiated at connection setup, interaction with ICMP messages, and so
on. The model covers all these. It is parameterized by the OS, allowing OS-
dependent behaviour to be specified cleanly; it is also non-deterministic, so as
not to constrain implementations unnecessarily.

This level of detail results in a model of roughly 30 000 lines of (commented)
higher-order logic (similar in size to the implementations, but structured rather
differently). As further evidence of its accuracy and completeness, it has been suc-
cessfully used as the basis for a Haskell implementation of a network stack [13].

The main part of the protocol model (the pale shaded region below) is the
host labelled transition system, or host LTS, describing the possible interactions
of a host OS: between program threads and host via calls and returns of the
Sockets API, and between host and network via message sends and receives.
The protocol model uses the host LTS, and a model of the TCP, UDP and
ICMP segments on the wire, to describe a network of communicating hosts.

TCP

IP

TCP

IP

UDP
ICMP

UDP
ICMP

IP network

applications
libraries and
Distributed Distributed

applications

Host LTS spec

libraries and

Sockets API interface

Wire interface

The host labelled transition relation, h
lbl
−→ h ′, is defined by some 148 rules

for the socket calls (5–10 for each interesting call) and some 46 rules for message
send/receive and for internal behaviour. An example of one of the simplest rules
is given in Fig. 1. The rule describes a host with a blocked thread attempting to
send data to a socket. The thread becomes unblocked and transfers the data to
the socket’s send queue. The send call then returns to the user.

The transition h 〈[...]〉
τ
−→ h 〈[...]〉 appears at the top, where the thread pointed

to by tid and the socket pointed to by sid are unpacked from the original and
final hosts, along with the send queue sndq for the socket. Host fields that are
modified in the transition are highlighted. The initial host has thread tid in state
Send2, blocking attempting to send str to sndq . After the transition, tid is in
state Ret(OK...), about to return to the user with str ′′, the data that has not
been sent, here constrained to be the empty string.

The bulk of the rule is the condition (a predicate) guarding the transition,
specifying when the rule applies and what relationship holds between the input
and output states. The condition is simply a conjunction of clauses, with no
temporal ordering. The rule only applies if the state of the socket, st , is either
ESTABLISHED or CLOSE WAIT. Then, provided send queue space is large

send 3 tcp: slow nonurgent succeed Successfully return from blocked state

having sen t data

h 〈[ts := ts ⊕ (tid 7→ (Send2(sid , ∗, str , opts))
d

);

socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗, sndq , sndurp , rcvq , rcvurp, iobc)))]]〉
τ
−→
h 〈[ts := ts ⊕ (tid 7→ (Ret(OK(implode str ′′)))

sched timer
);

socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗, sndq + +str ′
, sndurp′

, rcvq , rcvurp, iobc)))]]〉

st ∈ {ESTABLISHED;CLOSE WAIT} ∧
space ∈ send queue space(sf .n(SO SNDBUF))

(length sndq)(MSG OOB ∈ opts)
h.arch cb.t maxseg i2 ∧

space ≥ length str ∧
str ′ = str ∧ str ′′ = [] ∧
sndurp′ = if MSG OOB ∈ opts then ↑(length(sndq + +str ′) − 1) else sndurp

HOL syntax For optional data items, ∗ denotes absence (or a zero IP or port) and
↑ x denotes presence of value x . Concrete lists are written [1, 2, 3] and appending two
lists is written using an infix ++. Records are written within angled brackets 〈[...]〉.
Record fields can be accessed by dot notation or by pattern-matching. Record fields
may be overridden: cb′ = cb 〈[irs := seq]〉 states that the record cb′ is the same as the
record cb, except that field cb′

.irs has the value seq . The expression f ⊕ [(x , y)] or
f ⊕ (x 7→ y) denotes the finite map f updated to map x to y .

Fig. 1. Protocol-level model, example rule

enough, str is appended to the sndq in the final host. Lastly, the urgent pointer
sndurp′ is set appropriately.

Although the bulk of the model deals with the relatively simple Sockets API,
with many rules like that of Fig. 1, the real complexity arises from internal
actions that are largely invisible to the Sockets user, such as retransmission and
congestion control. For example, the rule deliver in 3 (not shown) that handles
normal message receipt comprises over 1 000 lines of higher-order logic.

The model has been validated against several thousand real-world network
traces, designed to test corner cases and unexpected situations. Of these, 92%
are valid according to the model, and we believe that for many purposes the
model is sufficiently accurate — certainly enough to be used as a reference, in
conjunction with the standard texts.

3 The new service-level specification

The service-level specification, illustrated below, describes the behaviour of a
network of hosts communicating over TCP, as observed at the Socket APIs
of the connections involved. It does not deal with TCP segments on the wire
(though it necessarily does include ICMP and UDP messages).

TCP

IP

TCP

IP

ICMP
UDP

ICMP
UDP

IP network

applications
libraries and
Distributed Distributed

libraries and
applications

Sockets API interface

In principle one could derive a service-level specification directly from the
protocol model, taking the set of traces it defines and erasing the TCP wire
segment transitions. However, that would not give a usable specification: one in
which key properties of TCP, that users depend on, are clearly visible. Hence,
we built the service-level specification by hand, defining a more abstract notion
of host state, an abstract notion of stream object, and a new network transition
relation, but aiming to give the same Sockets-API-observable behaviour.

The abstract host states are substantially simpler than those of the protocol-
level model. For example, the protocol-level TCP control block contains 44 fields,
including retransmit and keep-alive timers; window sizes, sequence position and
scaling information; timestamping and round trip times. Almost none of these
are relevant to the service-level observable behaviour, and so are not needed in
the service-level TCP control block.

Along with this, the transition rules that define the protocol dynamics, such
as deliver in 3 , become much simpler. The rules that deal with the Sockets API
must be adapted to the new host state, but they remain largely as before. The
overall size of the specification is therefore not much changed, at around 30 000
lines (including comments).

A naive approach to writing the individual rules would be to existentially
quantify those parts of the host state that are missing at the service level (and
then to logically simplify as much as possible). However, this would lead to
a highly non-deterministic and ultimately less useful specification. Instead, we
relied on a number of invariants of the low-level model, arguing informally that,
given those, the two behaviours match. We rely on the later validation to detect
any errors in these informal arguments.

In the rest of this section we aim to give a flavour of the service-level speci-
fication, referring the interested reader to the complete specification online [23].

The heart of the specification is a model of a bidirectional TCP connection
as a pair of unidirectional byte streams between Sockets endpoints:

– unidirectional stream :

tcpStream =〈[i : ip; (* source IP *)
p : port; (* source port *)
flgs : streamFlags;
data : byte list;
destroyed : bool

]〉

The data in the stream is a byte list. Further fields record the source IP
address and port of the stream, control information in the form of flags, and a
boolean indicating whether the stream has been destroyed at the source (say,
by deleting the associated socket). Some of these fields are shared with the low-
level specification, but others are purely abstract entities. Note that although a
stream may be destroyed at the source, previously sent messages may still be on
the wire, and might later be accepted by the receiver, so we cannot simply remove
the stream when it is destroyed. Similarly, if the source receives a message for
a deleted socket, a RST will typically be generated, which must be recorded in
the stream flags of the destroyed stream. These flags record whether the stream
is opening (SYN ,SYNACK), closing normally (FIN) or abnormally (RST).

– stream control information :

streamFlags =〈[SYN : bool; (* SYN , no ACK *)
SYNACK : bool; (* SYN with ACK *)
FIN : bool;
RST : bool

]〉

This control information is carefully abstracted from the protocol level, to
capture just enough structure to express the user-visible behaviour. Note that
the SYN and SYNACK flags may be set simultaneously, indicating the presence
of both kinds of message on the wire. The receiver typically lowers the stream
SYN flag on receipt of a SYN : even though messages with a SYN may still
be on the wire, subsequent SYN s will be detected by the receiver as invalid
duplicates of the original. A bidirectional stream is then just an unordered pair
(represented as a set) of unidirectional streams.

The basic operations on a byte stream are to read and write data. The fol-
lowing defines a write from Sockets endpoint (i1, p1) to endpoint (i2, p2).

– write flags and data to a stream :

write(i1, p1, i2, p2)(flgs, data)s s ′ = (
∃in out in ′ out ′.
sync streams(i1, p1, i2, p2)s(in , out) ∧
sync streams(i1, p1, i2, p2)s

′(in ′

, out ′) ∧
in ′ = in ∧
out ′.flgs =
〈[SYN :=(out .flgs.SYN ∨ flgs.SYN);

SYNACK :=(out .flgs.SYNACK ∨ flgs.SYNACK);
FIN :=(out .flgs.FIN ∨ flgs.FIN);
RST :=(out .flgs.RST ∨ flgs.RST)

]〉 ∧
out ′.data = (out .data + +data))

Stream s ′ is the result of writing flgs and data to stream s. Stream s consists
of a unidirectional input stream in and output stream out , extracted from the
bidirectional stream using the auxiliary sync streams function. Similarly s ′, the

send 3 tcp: slow nonurgent succeed Successfully return from blocked state

having sent data

(h 〈[ts := ts ⊕ (tid 7→ (Send2(sid , ∗, str , opts))
d

);

socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗)))]]〉,
S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s)],M)

τ
−→ (h 〈[ts := ts ⊕ (tid 7→ (Ret(OK(implode str ′′)))

sched timer
);

socks := socks ⊕ [(sid ,Sock(↑ fid , sf , ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗,F, cantrcvmore,

TCP Sock(st , cb, ∗)))]]〉,
S0 ⊕ [(streamid of quad(i1, p1, i2, p2), s ′)],M)

st ∈ {ESTABLISHED;CLOSE WAIT} ∧
space ∈ UNIV ∧
space ≥ length str ∧
str ′ = str ∧ str ′′ = [] ∧
flgs = flgs 〈[SYN :=F;SYNACK :=F;FIN :=F;RST :=F]〉 ∧
write(i1, p1, i2, p2)(flgs, str ′)s s ′

Fig. 2. Service-level specification, example rule

state of the stream after the write, consists of in ′ and out ′. Since we are writing
to the output stream, the input stream remains unchanged, in ′ = in . The
flags on the output stream are modified to reflect flgs. For example, SYN is
set in out ′.flgs iff flgs contains a SYN or out .flgs already has SYN set. Finally,
out ′.data is updated by appending data to out .data.

Fig. 2 gives the service-level analogue of the previous protocol-level rule. The
transition occurs between triples (h 〈[...]〉, S0 ⊕ [...],M), each consisting of a host,
a finite map from stream identifiers to streams, and a set of UDP and ICMP
messages. The latter do not play an active part in this rule, and can be safely
ignored. Host state is unpacked from the host as before. Note that protocol-
level constructs such as rcvurp and iobc are absent from the service-level host
state. As well as the host transition, there is a transition of the related stream
s to s ′. The stream is unpacked from the finite map via its unique identifier
streamid of quad(i1, p1, i2, p2), derived from its quad.

As before, the conditions for this rule require that the state of the socket st

must be ESTABLISHED or CLOSE WAIT. Stream s ′ is the result of writing
string str ′ and flags flgs to s. Since flgs are all false, the write does not cause
any control flags to be set in s ′, although they may already be set in s of course.

This rule, and the preceding definitions, demonstrate the conceptual simplic-
ity and stream-like nature of the service level. Other interesting properties of
TCP are clearly captured by the service-level specification. For example, indi-
vidual writes do not insert record boundaries in the byte stream, and in general,
a read returns only part of the data, uncorrelated with any particular write.
The model also makes clear that the unidirectional streams are to a large extent
independent. For example, closing one direction does not automatically cause
the other to close.

h1.send(xyz)
h2h1

sndq

cd..q

rcvq

rcvq sndq
... ...

ACK

fgh

stu
h2h1

sndq

cd..q

rcvq

rcvq sndq
... ...

ACK

fgh

stufg..zfg..w

h1.send(xyz)

...

cdefg..pqrstuvwxyz

...

cdefg..pqrstuvw

h2h1h2h1

Fig. 3. Abstraction function, illustrated (data part only)

4 The abstraction function

While the service specification details what service an implementation of TCP
provides to the Sockets interface, the abstraction function details how. The
abstraction function maps protocol-level states and transitions to service-level
states and transitions. A protocol-level network consists of a set of hosts, each
with their own TCP stacks, and segments on the wire. The abstraction func-
tion takes this data and calculates abstract byte streams between Sockets API
endpoints, together with the abstract connection status information.

The latter is the more intricate part, but we can give only a simple example
here: the destroyed flag is set iff either there is no socket on the protocol-level
host matching the quad for the TCP connection or the state of the TCP socket
is CLOSED.

The former is illustrated in Fig. 3. For example, consider the simple case
where communication has already been established, and the source is sending a
message to the destination that includes the string “abc...xyz”, of which bytes
up to “w” have been moved to the source sndq . Moreover, the destination has
acknowledged all bytes up to “f”, so that the sndq contains “fgh...uvw”, and
snd una points to “f”. The destination rcvq contains “cde...opq”, waiting for
the user to read from the socket, and rcv nxt points just after “q”.

↓ snd una ↓ rcv nxt

message ...abcdefghijklmnopqrstuvwxyz...

source sndq fghijklmnopqrstuvw

destination rcvq cdefghijklmnopq

DROP(rcv nxt − snd una)sndq rstuvw

stream cdefghijklmnopqrstuvw

The data that remains in the stream waiting for the destination endpoint
to read, is the byte stream “cdefghijklmnopqrstuvw”. This is simply the des-
tination rcvq with part of the source sndq appended: to avoid duplicating the

– unidirectional abstraction function :

abs hosts one sided(i1, p1, i2, p2)(h,msgs, i) = (
(* messages that we are interested in, including oq and iq *)
let (hoq , iiq) =

case (h.oq , i .iq) of ((msgs)
1

,

`

msgs ′
´

2
) → (msgs,msgs ′) in

let msgs = list to set hoq ∪ msgs ∪ (list to set iiq) in

(* only consider TCP messages . . . *)
let msgs = {msg | TCP msg ∈ msgs} in

(* . . . that match the quad *)
let msgs = msgs ∩

{msg | msg = msg 〈[is1 := ↑ i1; ps1
:= ↑ p1; is2 := ↑ i2; ps2

:= ↑ p2]〉} in

(* pick out the send and receive sockets *)
let smatch i1 p1 i2 p2 s =

((s.is1, s.ps1
, s.is2, s.ps2

) = (↑ i1, ↑ p1, ↑ i2, ↑ p2)) in

let snd sock = Punique range(smatch i1 p1 i2 p2)h.socks in

let rcv sock = Punique range(smatch i2 p2 i1 p1)i .socks in

let tcpsock of sock = case sock .pr of

TCP1 hostTypes $TCP PROTO tcpsock → tcpsock
‖ 3 → ERROR“abs hosts one sided:tcpsock of”

in

(* the core of the abstraction function is to compute data *)
let (data : byte list) = case (snd sock , rcv sock) of

(↑(8 , hsock), ↑(9 , isock)) → (
let htcpsock = tcpsock of hsock in

let itcpsock = tcpsock of isock in

let (snd una, sndq) = (htcpsock .cb.snd una, htcpsock .sndq) in

let (rcv nxt , rcvq) = (itcpsock .cb.rcv nxt , itcpsock .rcvq) in

let rcv nxt = tcp seq flip sense rcv nxt in

let sndq ′ = DROP((num(rcv nxt − snd una)))sndq in

rcvq + +sndq ′)

‖ (↑(8 , hsock), ∗) → (
let htcpsock = tcpsock of hsock in

htcpsock .sndq)

‖ (∗, ↑(9 , isock)) → (
let itcpsock = tcpsock of isock in

let (rcv nxt : tcpLocal seq32 , rcvq : byte list) =
(tcp seq flip sense(itcpsock .cb.rcv nxt), itcpsock .rcvq) in

rcvq + +(stream reass rcv nxt msgs))

‖ (∗, ∗) → ERROR“abs hosts one sided:data”
in

〈[i := i1;
p := p1;
flgs :=
〈[SYN :=(∃msg .msg ∈ msgs ∧ msg = msg 〈[SYN :=T;ACK :=F]〉);

SYNACK :=(∃msg .msg ∈ msgs ∧ msg = msg 〈[SYN :=T;ACK :=T]〉);
FIN :=(∃msg .msg ∈ msgs ∧ msg = msg 〈[FIN :=T]〉);
RST :=(∃msg .msg ∈ msgs ∧ msg = msg 〈[RST :=T]〉)

]〉;
data := data;
destroyed :=(case snd sock of

↑(sid , hsock) → ((tcpsock of hsock).st = CLOSED)
‖ ∗ → T)

]〉)

Fig. 4. Abstraction function, excerpt

shared part of the byte sequence, (rcv nxt − snd una) bytes are dropped from
sndq before appending it to rcvq .

An excerpt from the HOL definition appears in Fig. 4. It takes a quad
(i1, p1, i2, p2) identifying the TCP connection, a source host h, a set of mes-
sages msgs on the wire, and a destination host i , and produces a unidirectional
stream. It follows exactly the previous analysis: (rcv nxt − snd una) bytes are
dropped from sndq to give sndq ′, which is then appended to rcvq to give the
data in the stream.

Note that, in keeping with the fact that TCP is designed so that hosts can
retransmit any data that is lost on the wire, this abstraction does not depend on
the data in transit — at least for normal connections in which neither endpoint
has crashed.

For a given TCP connection, the full abstraction function uses the unidirec-
tional function twice to form a bidirectional stream constituting the service-level
state. As well as mapping the states, the abstraction function maps the transi-
tion labels. Labels corresponding to visible actions at the Sockets interface, such
as a connect call, map to themselves. Labels corresponding to internal protocol
actions, such as the host network interface sending and receiving datagrams from
the wire, are invisible at the service level, and so are mapped to τ , indicating no
observable transition. Thus, for each protocol-level transition, the abstraction
function gives a service-level transition with the same behaviour at the Sockets
interface. Mapping the abstraction function over a protocol-level trace gives a
service-level trace with identical Sockets behaviour. Every valid protocol-level
trace should map to a valid service-level trace.

5 Experimental validation

How can we ensure that TCP implementations (written in C), our previous
protocol-level model (in HOL), and our new service-level specification (also in
HOL) are consistent? Arguing that a small specification corresponds to a simple
real-world system can already be extremely challenging. Here, we are faced with
very large specifications and a very complex real-world system. Ideally one would
verify the relationship between the protocol and service specifications by proving
that their behaviours correspond, making use of the abstraction function. One
would also prove that the Sockets behaviour of the endpoint implementations
(formalized using a C semantics) conformed to the protocol model.

Proving the relationships between the levels in this way would be a very
challenging task indeed. One of the main barriers is the scale of TCP implemen-
tations, including legacy behavioural intricacies of TCP and Sockets, which were
not designed with verification in mind.

Hence, we adopt the pragmatic approach of validating the specifications to
provide reasonable confidence in their accuracy. Note that for TCP the imple-
mentations are the de facto standard. In producing specifications after the fact,
we aim to validate the specifications against the implementation behaviour. Our
techniques could equally well be used in the other direction for new protocol de-

signs. Our service-level validation builds on our earlier protocol-level work [5,6],
so we begin by recalling that.

Protocol-level validation We instrumented a test network and wrote tests
to drive hosts on the network, generating real-world traces. We then ensured that
the protocol specification admitted those traces by running a special-purpose
symbolic model checker in HOL, correcting the specification, and iterating, when
we discovered errors. Because it is based directly on the formal specification, and
deals with all the internal state of hosts, the checker is extremely rigorous, pro-
ducing a machine checked proof of admissibility for each successfully validated
trace. Obviously no testing-based method can be complete, but this found many
issues in early drafts of the specification, and also identified a number of anoma-
lies in TCP implementations.

Service-level validation For the service-level validation of this paper, we be-
gan with a similar instrumented test network, but collected double-ended traces,
capturing the behaviour of two interacting hosts, rather than just one endpoint.
We then used our previous symbolic evaluation tool to discover symbolic traces
of the protocol-level model that corresponded to the real-world traces. That is
a complex and computationally intensive process, involving backtracking depth-
first search and constraint simplification, essentially to discover internal host
state and internal transitions that are not explicit in the trace.

We then ground these symbolic traces, finding instantiations of their variables
that satisfy any remaining constraints, to produce a ground protocol-level trace
in which all information is explicit. Given such a ground trace, we can map the
abstraction function over it to produce a candidate ground service-level trace.

It is then necessary to check validity of this trace, which is done with a service-
level test oracle. As at the protocol level, we wrote a new special-purpose service-
level checker in HOL which performs symbolic evaluation of the specification
with respect to ground service-level traces. Crucially, this checking process is
much simpler than that at the protocol level because all host values, and all
transitions, are already known. All that remains is to check each ground service-
level transition against the specification.

The most significant difference between the old and new checkers is that
the former had to perform a depth-first search to even determine which rule
of the protocol model was appropriate. Because that work has already been
done, and because the two specifications have been constructed so that their
individual rules correspond, the service-level checker does not need to do this
search. Instead, it can simply check the service-level version of the rule that
was checked at the protocol level, dealing with each transition in isolation. In
particular, this means that the service-level checker need not attempt to infer
the existence of unobservable τ -transitions.

Another significant difference between the two checkers is that the service-
level checker can aggressively search for instantiations of existentially quantified
variables that arise when a rule’s hypothesis has to be discharged. At the protocol
level, such variables may appear quite unconstrained at first appearance, but

then become progressively more constrained as further steps of the trace are
processed.

For example, a simplified rule for the socket call might appear as

fd 6∈ usedfds(h0)

h0〈[socks := socks]〉
tid·socket()
−−−−−−−→ h0〈[socks := socks ⊕ (sid , fd)]〉

stating that when a socket call is made, the host h0’s socks map is updated to
associate the new socket (identified by sid) with file-descriptor fd , subject only
to the constraint that the new descriptor not already be in use. (This under-
specification is correct on Windows; on Unix, the file-descriptor is typically the
next available natural number.)

In the protocol-level checker, the fd variable must be left uninstantiated until
its value can be deduced from subsequent steps in the trace. In the service-level
checker, both the initial host and the final host are available because they are
the product of the abstraction function applied to the previously generated,
and ground, protocol trace. In a situation such as this, the variable from the
hypothesis is present in the conclusion, and can be immediately instantiated.

In other rules of the service-level specification, there can be a great many
variables that occur only in the hypothesis. These are existentially quantified,
and the checker must determine if there is an instantiation for them that makes
the hypothesis true. The most effective way of performing this check is to sim-
plify, apply decision procedures for arithmetic, and to then repeatedly case-split
on boolean variables, and the guards of if-then-else expressions to search for
possible instantiations.

The above process is clearly somewhat involved, and itself would ordinarily
be prone to error. To protect against this we built all the checking infrastruc-
ture within HOL. So, when checking a trace, we are actually building machine-
checked proofs that its transitions are admitted by the inductive definition of
the transition relation in the specification.

Results Our earlier protocol-level validation involved several thousand traces
designed to exercise the behaviour of single endpoints, covering both the Sockets
API and the wire behaviour. To produce a reasonably accurate specification, we
iterated the checking and specification-fixing process many times.

For the service-level specification, we have not attempted the same level
of validation, simply due to resource constraints. Instead, we have focused on
developing the method, doing enough validation to demonstrate its feasibility.
Producing a specification in which one should have high confidence might re-
quire another man-year or so of testing — perfectly feasible, and a tiny amount
of effort in terms of industrial protocol stack development, but unlikely to lead
to new research insights. That said, most of the Sockets API behaviour does not
relate to the protocol dynamics and is common between the two specifications,
so is already moderately well tested. In all, 30 end-to-end tests were generated,
covering a variety of connection setup and tear-down cases and end-to-end com-

munication, but not including packet loss, reordering, duplication, and severe
delay. After correcting errors, all these traces were found to validate successfully.

To illustrate how discriminating our testing process is, we mention two errors
we discovered during validation. At the protocol-level, a TCP message moving
from a host output queue to the wire corresponds to an unobservable τ event at
the service level. Naively we assumed the host state would be unchanged, since
the output queue at the service-level carries only ICMP and UDP messages.
However, this is not correct, since the transmission of a TCP message alters the
timer associated with the output queue, increasing its value. The update to the
timer permits the host to delay sending the ICMP and UDP messages. Without
this side-effect, the service-level specification effectively required ICMP and UDP
messages to be sent earlier than they would otherwise have been. To correct this
error, the service specification had to allow the timer to be updated if at the
protocol-level there was potentially a TCP message on the queue that might be
transferred to the wire. Another error arose in the definition of the abstraction
function. The analysis of the merging of the send and receive queues on source
and destination hosts, described in Sect. 4, was initially incorrect, leading to
streams with duplicated, or missing, runs of data. Fortunately this error was
easy to detect by examining the ground service-level trace, where the duplicated
data was immediately apparent.

Our validation processes check that certain traces are included in the
protocol-level or service-level specification. As we have seen, this can be a very
discriminating test, but it does not touch on the possibility that the specifications
admit too many traces. That cannot be determined by reference to the de facto
standard implementations, as a reasonable specification here must be looser than
any one implementation. Instead, one must consider whether the specifications
are strong enough to be useful, for proving properties of applications that use
the Sockets API, or (as in [13]) as a basis for new implementations.

6 Related work

This work builds on our previous TCP protocol model [5,6], and we refer the
reader there for detailed discussion of related work. We noted that “to the best
of our knowledge, however, no previous work approaches a specification dealing
with the full scale and complexity of a real-world TCP”. This also applies to
the service-level specification. As before, this is unsurprising: we have depended
on automated reasoning tools and on raw compute resources that were simply
unavailable in the 1980s or early 1990s. Our goals have also been different, and
in some sense more modest, than the correctness theorems of traditional for-
mal verification: we have not attempted to prove that an implementation of
TCP satisfies the protocol model, or that the protocol satisfies the service-level
specification.

There is a vast literature devoted to verification techniques for protocols,
with both proof-based and model checking approaches, e.g. in conferences such
as CAV, CONCUR, FM, FORTE, ICNP, SPIN, and TACAS. The most detailed

rigorous specification of a TCP-like protocol we are aware of is that of Smith
[22], an I/O automata specification and implementation, with a proof that one
satisfies the other, used as a basis for work on T/TCP. The protocol is still
substantially idealised, however. Later work by Smith and Ramakrishnan uses
a similar model to verify properties of a model of SACK [21]. A variety of work
addresses radically idealised variants of TCP [8,9,19,10,3,15,16]. Finally, Postel’s
PhD thesis used early Petri net protocol models descriptively [18].

Implementations of TCP in high-level languages have been written by Bia-
gioni in Standard ML [2], by Castelluccia et al. in Esterel [7], and by Kohler et

al. in Prolac [12]. As for any implementation, allowable non-determinism means
they cannot be used as oracles for conformance testing.

For concurrent and distributed systems, there are many abstraction-
refinement techniques, such as abstraction relations (which include our abstrac-
tion function) and simulation relations, see [14] for an overview. As an example
of these techniques, Alur and Wang address the PPP and DHCP protocols [1].
For each they check refinements between models that are manually extracted
from the RFC specification and from an implementation. Although these tech-
niques are widely used in verification, to the best of our knowledge, they have
never been applied previously to real-world protocols on the scale of TCP.

7 Conclusion

Summary We presented a formal, mechanized, service-level specification of
TCP, tackling the full detail of the real-world protocol. The specification is ap-
propriate for formal and informal reasoning about applications built above the
Sockets layer, and about the service that TCP and TCP-like protocols provide
to the Sockets layer. The service-level specification stands as a precise state-
ment of end-to-end correctness for TCP. We also presented a formal abstraction
function from our previous protocol-level model of TCP to the service-level spec-
ification, thereby explaining how stream-like behaviour arises from the protocol
level. We used novel validation tools, coupled with the results of previous work,
to validate both the service specification and the abstraction function. The spec-
ification, abstraction function, and testing infrastructure were developed entirely
in HOL.

On the practice of protocol design This paper is the latest in a line of
work developing rigorous techniques for real-world protocol modelling and speci-
fication [20,24,17,5,6,4]. In most of this work to date we have focused on post-hoc
specification of existing infrastructure (TCP, UDP, ICMP, and the Sockets API)
rather than new protocol design, though the latter is our main goal. This is for
two reasons. Firstly, the existing infrastructure is ubiquitous, and likely to re-
main so for the foreseeable future: these wire protocols and the Sockets API are
stable articulation points around which other software shifts. It is therefore well
worth characterising exactly what they are, for the benefit of both users and im-
plementers. Secondly, and more importantly, they are excellent test cases. There
has been a great deal of theoretical work on idealised protocols, but, to develop

rigorous techniques that can usefully be applied, they must be tested with real-
istic protocols. If we can deal with TCP and Sockets, with all their accumulated
legacy of corner cases and behavioural quirks, then our techniques should cer-
tainly be applicable to new protocols. We believe that that is now demonstrated,
and it is confirmed by our experience with design-time formalisation and con-
formance testing for an experimental MAC protocol for an optically switched
network [4].

In recent years there has been considerable interest in ‘clean slate’ network-
ing design, and in initiatives such as FIND and GENI. Protocols developed in
such work should, we argue, be developed as trios of running implementation,
rigorous specification, and verified conformance tester between the two. Modest
attention paid to this at design time would greatly ease the task — for exam-
ple, specifying appropriate debug trace information, and carefully identifying
the deterministic parts of a protocol specification, would remove the need for
backtracking search during validation. Declarative specification of the intended
protocol behaviour, free from the imperative control-flow imposed by typical im-
plementation languages, enables one to see unnecessary behavioural complexities
clearly. Verified conformance testing makes it possible to keep implementations
and specifications in sync as they are developed. Together, they should lead to
cleaner, better-understood and more robust protocols, and hence to less costly
and more robust infrastructure.

More specifically to TCP, we see two main directions for future work. One
is simply to scale up our validation process, covering a wide variety of common
protocol stacks, increasing confidence still further by testing against more traces,
identifying and testing additional invariants of connection states, and so forth,
and producing a packaged conformance tester for TCP implementations. This
would be useful, and on an industrial scale would be a relatively small project
(compared, perhaps, to the QA effort involved in developing a new protocol
stack), but doing this for an existing protocol may be inappropriate for a small
research group. The weight of legacy complexity here is very large, so non-trivial
resources (perhaps several man-years) would be needed to cope with the detail,
but the basic scientific questions, of how to do this, have now been solved. Doing
this for new protocols, on the other hand, seems clearly worthwhile, even with
very limited resources.

The second, more research-oriented, question, is to consider not just valida-
tion of end-to-end functional correctness (as we have done here), but properties
such as end-to-end performance. Ultimately one could envisage proving network-
wide properties, such as network stability, thereby connecting highly abstract
properties of these protocols to the low-level details of their implementations.

Acknowledgements We gratefully acknowledge the use of the Condor facility
in the Computer Laboratory, work of Adam Biltcliffe on testing infrastructure,
and support from a Royal Society University Research Fellowship (Sewell) and
EPSRC grants EPC510712 and GRT11715. NICTA is funded by the Australian
Government’s Backing Australia’s Ability initiative, in part through the Aus-
tralian Research Council.

References

1. R. Alur and B.-Y. Wang. Verifying network protocol implementations by symbolic
refinement checking. In Proc. CAV ’01, LNCS 2102, pages 169–181, 2001.

2. E. Biagioni. A structured TCP in Standard ML. In Proc. SIGCOMM ’94, 1994.
3. J. Billington and B. Han. On defining the service provided by TCP. In Proc. ACSC:

26th Australasian Computer Science Conference, Adelaide, 2003.
4. A. Biltcliffe, M. Dales, S. Jansen, T. Ridge, and P. Sewell. Rigorous protocol design

in practice: An optical packet-switch MAC in HOL. In Proc. ICNP, Nov. 2006.
5. S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough.

Rigorous specification and conformance testing techniques for network protocols,
as applied to TCP, UDP, and Sockets. In Proc. SIGCOMM 2005, Aug. 2005.

6. S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough.
Engineering with logic: HOL specification and symbolic-evaluation testing for TCP
implementations. In Proc. POPL, 2006.

7. C. Castelluccia, W. Dabbous, and S. O’Malley. Generating efficient protocol code
from an abstract specification. IEEE/ACM Trans. Netw., 5(4):514–524, 1997.

8. D. Chkliaev, J. Hooman, and E. de Vink. Verification and improvement of the
sliding window protocol. In Proc. TACAS’03, LNCS 2619, pages 113–127, 2003.

9. E. Fersman and B. Jonsson. Abstraction of communication channels in Promela:
A case study. In Proc. 7th SPIN Workshop, LNCS 1885, pages 187–204, 2000.

10. R. Hofmann and F. Lemmen. Specification-driven monitoring of TCP/IP. In
Proc. 8th Euromicro Workshop on Parallel and Distributed Processing, Jan. 2000.

11. The HOL 4 system, Kananaskis-3 release. hol.sourceforge.net.
12. E. Kohler, M. F. Kaashoek, and D. R. Montgomery. A readable TCP in the Prolac

protocol language. In Proc. SIGGCOMM ’99, pages 3–13, August 1999.
13. P. Li and S. Zdancewic. Combining events and threads for scalable network services.

In Proc. PLDI, pages 189–199, 2007.
14. N. Lynch and F. Vaangdrager. Forward and backward simulations – Part I: Un-

timed systems. Information and Computation, 121(2):214–233, Sept. 1995.
15. S. L. Murphy and A. U. Shankar. A verified connection management protocol for

the transport layer. In Proc. SIGCOMM, pages 110–125, 1987.
16. S. L. Murphy and A. U. Shankar. Service specification and protocol construction

for the transport layer. In Proc. SIGCOMM, pages 88–97, 1988.
17. M. Norrish, P. Sewell, and K. Wansbrough. Rigour is good for you, and feasible:

reflections on formal treatments of C and UDP sockets. In Proceedings of the 10th
ACM SIGOPS European Workshop, pages 49–53, Sept. 2002.

18. J. Postel. A Graph Model Analysis of Computer Communications Protocols. Uni-
versity of California, Computer Science Department, PhD Thesis, 1974.

19. I. Schieferdecker. Abruptly-terminated connections in TCP. In Proc. Int. Workshop
on Applied Formal Methods In System Design, 1996.

20. A. Serjantov, P. Sewell, and K. Wansbrough. The UDP calculus: Rigorous seman-
tics for real networking. In Proc. TACS 2001, Oct. 2001.

21. M. A. Smith and K. K. Ramakrishnan. Formal specification and verification of
safety and performance of TCP selective acknowledgment. IEEE/ACM Trans.
Netw., 10(2):193–207, 2002.

22. M. A. S. Smith. Formal verification of communication protocols. In Proc. FORTE
IX/PSTV XVI, 1996.

23. The Netsem Project. Web page. http://www.cl.cam.ac.uk/users/pes20/Netsem/.
24. K. Wansbrough, M. Norrish, P. Sewell, and A. Serjantov. Timing UDP: mechanized

semantics for sockets, threads and failures. In Proc. ESOP, LNCS 2305, 2002.

hol.sourceforge.net
http://www.cl.cam.ac.uk/users/pes20/Netsem/

	A rigorous approach to networking: TCP, from implementation to protocol to service
	Tom Ridge, Michael Norrish, and Peter Sewell

