
A Mechanically Verified, Sound and Complete

Theorem Prover for First Order Logic

Tom Ridge1 and James Margetson2

1 LFCS, Informatics, Edinburgh University, Scotland, UK
2 No affiliation

Abstract. We present a system of first order logic, together with sound-
ness and completeness proofs wrt. standard first order semantics. Proofs
are mechanised in Isabelle/HOL. Our definitions are computable, allow-
ing us to derive an algorithm to test for first order validity. This algorithm
may be executed in Isabelle/HOL using the rewrite engine. Alternatively
the algorithm has been ported to OCaML.

1 Introduction

In this work we mechanise a system of first order logic, and show soundness and
completeness for this system. We also derive an algorithm which tests a sequent s
for first order validity: s is true in all models iff our algorithm terminates with the
answer True. All results are mechanised in Isabelle/HOL, and the theorem prover
can be executed inside Isabelle/HOL using the rewrite engine. Alternatively, the
definitions have been ported to OCaML to give a directly executable theorem
prover.

This work is interesting for a number of reasons. Soundness is a prerequisite
for a logical system. Completeness of a logical system means that any sequent
true in all models is provable in the system. This signals a step change in con-
fidence in the system: when attempting a proof of a true statement, we have
gone from knowing that we will never err, to knowing that we will eventually
succeed. Soundness and completeness for first order logic are the first significant
results in metamathematics, so that the mathematical content of this work is
interesting.

Our main contribution is to take this process one step further, and provide
a mechanically verified algorithm that will actually prove every valid sequent.
This is the first mechanically verified, sound and complete theorem prover for
FOL. Others have presented mechanisations of completeness proofs for proposi-
tional logic, and occasionally predicate logic, but none have aimed to make the
definitions executable. Completeness of a theorem prover is useful from a user’s
point of view: one wants to know that the failure of a theorem prover to prove a
sequent arises from the unprovability of the sequent, and not from a deficiency
in the theorem prover.

Our work is also interesting because of the range of possible applications.

2

The mechanization of metamathematics itself has important implications
for automated reasoning since metatheorems can be applied as labor-
saving devices to simplify proof construction.[Sha94]

For instance, reflection [Har95] is a mechanism whereby, having verified a
piece of code correct, one can incorporate it in a trusted way in the kernel of
a theorem prover or proof checker. Since we have verified a theorem prover for
first order logic, we could conceivably incorporate this code into the kernel of
a theorem prover or proof checker. The advantage of reflection is that we can
safely extend our systems in non-trivial ways.

Proofs involving the semantics of logical systems are subtle, and can be hard
to construct correctly, and to understand correctly, because one tends to bring a
significant amount of intuition to the process, which may not be justified. As an
example of these problems, free variables have long been felt to be problematic
[ZTA+], so much so that some formalisations of first order logic go to great
lengths to avoid them all together [Qui62]. We feel that this work has pedagogic
advantages in this area, and have attempted to illustrate this with a completely
formal proof of the soundness of the ∀R/∀I rule1.

We feel the mechanisation is also a contribution.

– We polish the proofs substantially: we were not afraid to change the definition
of the logical system to make the proofs much more pleasant.

– The mechanisation is small, consisting of around 1000 lines of definitions
and proofs, which makes comprehending and extending the work hopefully
as simple as possible.

– We highlight dependencies between sections of the proof: soundness, for in-
stance, does not require the universe of the models to be infinite.

– For metamathematical reasons, we aim to make the proofs as weak as pos-
sible. We remove uses of wellfounded induction in favour of natural number
induction, which is the strongest principle we use, save for one application
of König’s lemma. Consequently the proofs could be carried out in relatively
weak systems, certainly much weaker than HOL.

This work is also interesting from an aesthetic standpoint, in that it nicely
combines the areas of mathematics, metamathematics, logic, and algorithms. In
the following sections, we give all the definitions, and outline the main lemmas,
of the mechanised proofs.

2 Proof Outline

The rules of our logical system are given in Fig. 1. Terms are simply variables
xi. Theoretically this is no restriction, since the usual first order terms may be
simulated. We occasionally use x, y, z to stand for variables. Parameter a is a
variable xi. a is used in preference to emphasise the eigenvariable status: a does

1 Which is simply the ∀ rule here, since we work in a one sided system.

3

Ax
` P (xi1

, . . . , xik
), Γ, P (xi1

, . . . , xik
), ∆

` Γ, P (xi1
, . . . , xik

)
NoAx

` P (xi1
, . . . , xik

), Γ

Ax
` P (xi1

, . . . , xik
), Γ, P (xi1

, . . . , xik
), ∆

` Γ, P (xi1
, . . . , xik

)
NoAx

` P (xi1
, . . . , xik

), Γ

` Γ, A, B
∨

` A ∨ B, Γ

` Γ, A ` Γ, B
∧

` A ∧ B, Γ

` Γ, [a/x]A
∀

` ∀x.A, Γ

` Γ, [xn/x]A, (∃x.A)n+1

∃

` (∃x.A)n, Γ

NoAx: P (xi1
, . . . , xik

) does not appear in Γ
NoAx: P (xi1

, . . . , xik
) does not appear in Γ

∀: a does not appear free in ∀x.A, Γ

Fig. 1. Deterministic Variant of Wainer and Wallen’s System [WW92]

not appear free in ∀x.A, Γ . Atomic predicates are positive atoms P,Q, . . . and
negative atoms P ,Q, Literals are atomic predicates applied to a tuple of
terms, P (xi1 , . . . , xin

), P (xi1 , . . . , xin
), The intent is that P (xi1 , . . . , xin

) is
true in a model iff P (xi1 , . . . , xin

) is false. Note that there is no relation between
an atomic predicate applied to two tuples of different arity. For instance, the
value of P (x, y) in a model is independent of the value of P (x, y, z). Formulas
A,B, . . . are inductively defined as the least set containing literals, and closed
under applications of ∧,∨,∀,∃. The omission of ¬,→ is no restriction, since
they can be defined as abbreviations as usual. Numbered formulae are pairs of
a formula and a number. We say that a formula A is tagged with n, and write
An, when talking about the numbered formula (A,n). Sequents ` Γ are lists Γ
of numbered formulae. Initially every formula in a sequent is tagged with 0. Any
formulae which arise as a result of applying rules ∧,∨,∀,∃ get tagged with 0.
Except when the formula is quantified by an ∃, the tag is irrelevant and is not
displayed. A derivation in this system is simply a finite tree constructed using
the rules. If we read these rules backwards, they give an algorithm for taking
apart a sequent. The algorithm is deterministic2 because exactly one rule applies
to any given sequent.

We can connect syntax and semantics in the standard way by giving an
interpretation of primitive propositions as propositions in a model and extending
this to formulas and sequents such that the extension respects standard Tarski
semantics. For example, A ∧ B is true in a model iff A is true, and B is true.

Looking at the rules, it is quite easy to convince ourselves that they are sound

in the sense that, if the premises of the rule are true in all models, with respects

2 In rule ∀, we choose a to be xi+1 where i is the maximum index of the free variables
occurring in the conclusion of the rule.

4

to all interpretations of free variables, then so too is the conclusion. For the
axioms, this is just the recognition that we are working in a classical metalogic.
Actually, soundness for rule ∀ is not so obvious, and we give a full proof later.

More interesting is the question of whether the rules are complete, that is, do
they suffice to prove every true proposition? We wish to show that, if a sequent s
is true in all models, then we can prove it using our system of rules. Put another
way, if we fail to prove s then it had better be false in at least one model. Given
that we fail to prove s, how can we exhibit a model where s is false? When we
attempt to prove s using our system of rules, if we eventually close every branch
then we have a proof of s. So if we fail to prove s, there must be at least one
branch which goes on forever. We call this branch a failing path, and denote
it f . We can then define a model by taking N as the domain, interpreting each
variable xi as the number i, and interpreting an atomic predicate P (xi1 , . . . , xin

)
as true iff P (xi1 , . . . , xin

) does not appear anywhere on the failing path f . By
induction on the size of the formula, we can see that every formula appearing
on f must get false. Since f starts at s, and all formulae in s get false, then s
must also get false in this model. Let us consider the ∧ case in the inductive
argument. We must show that if P ∧ Q appears on f , then P ∧ Q gets false in
the model. Assume P ∧Q appears on f . We must show that P ∧Q gets false in
the model. Since P ∧Q appears in a sequent on f , eventually P ∧Q gets to the
head of the sequent, and rule ∧ is applied. At this point, either P appears on f
or Q appears on f . By induction hypothesis, (at least one of) P or Q gets false
in the model, so P ∧ Q gets false in the model.

Having shown soundness and completeness for our system, we can derive an
algorithm for first order validity: the algorithm simply takes the initial sequent
s, and applies the rules of the logical system, keeping track of those sequents
that appear at each stage. If at any stage all branches have been closed and
there are no more sequents to consider, the algorithm will terminate with the
answer True: if the algorithm terminates with True, then certainly we have a
finite derivation and s is valid. Conversely, if s is valid, then by completeness
there is a finite derivation, and we can argue that at stage n our algorithm has
considered all potential derivations of depth less than or equal to n. In this way,
we can see that the algorithm will terminate with True iff s is valid. We also
note that by the undecidability result for first order logic, if the sequent would
lead to an infinite derivation, the algorithm cannot always terminate with False.

3 Formalisation

3.1 Notation

We work in Isabelle/HOL, a variant of classical, simply typed, higher order logic.
Isabelle/HOL has a meta-logic. The symbol =⇒ stands for the implication of
the meta-logic. Nothing substantial is lost by considering this synonymous with
the object level implication −→. Nested meta-logical implication A =⇒ B =⇒
C can be written [[A; B]] =⇒ C. The symbol ≡ stands for the equality of the

5

meta-logic. Again, nothing substantial is lost by considering this synonymous
with the object level equality =. Type aliases are syntactic shorthand for the
underlying type, and have no logical meaning. On the other hand, new types
may be introduced axiomatically, or defined in relation to an already existing
type. The type N of natural numbers is written nat. Type constructors are func-
tions mapping type lists to types. Application of a type constructor is typically
written postfix. For example, the type of sets over an underlying type ′a is ′a set.
Application of a function f to an argument a is written simply f a. The function
which takes an argument x and produces a result f x is denoted by λx . f x. The
function which is exactly the same as f, except that x is mapped to y, is written
f (x := y). The type of a function with domain ′a and codomain ′b is ′a ⇒ ′b.
ML style datatypes are present, as is definition by primitive and wellfounded
recursion. Lists are a particularly important datatype. The type of lists over a
base type ′a is formed by applying the list type constructor, viz. ′a list. The
empty list is written [], whilst the list xs with an additional x on the front is
written x # xs. The list containing 1, 2, 3 is written [1 , 2 , 3]. The functions to
take the head, hd, and tail, tl, of a list are as usual, such that hd (x # xs) =
x and tl (x # xs) = xs. The concatenation of two lists is written xs @ ys. The
function set takes an ′a list to an ′a set in the obvious way. The type of pairs
over base types ′a, ′b is written ′a × ′b, and has the standard projections fst,
snd. Datatypes are accompanied by destructors in the form of case statements.
For example, the case distinction on natural numbers may be written case x of

0 ⇒ baseCase | Suc n ⇒ stepCase n. This has the eta-contracted form natcase

baseCase stepCase.

3.2 Formulas

Predicates Pi are identified by their index i ∈ N. Similarly variables xi.

types pred = nat types var = nat

Terms are variables. Formulas are literals (positive and negative atomic pred-
icates applied to tuples of variables, here represented as lists), conjunctions, dis-
junctions, foralls and exists. Variables and binding are handled by De Bruijn’s
nameless representation: a bound variable is a natural number indicating the
number of enclosing quantifiers one must traverse to find the binding quantifier.
This represents a deep embedding of the logic [WN04]. Free variables, substitu-
tion, and instantiation are defined as usual.

datatype form =
PAtom pred (var list)
| NAtom pred (var list)
| FConj form form
| FDisj form form
| FAll form
| FEx form

consts fv :: form ⇒ var list
primrec

fv (PAtom p vs) = vs
fv (NAtom p vs) = vs
fv (FConj f g) = (fv f) @ (fv g)
fv (FDisj f g) = (fv f) @ (fv g)
fv (FAll f) = preSuc (fv f)
fv (FEx f) = preSuc (fv f)

6

consts preSuc :: nat list ⇒ nat list
primrec

preSuc [] = []
preSuc (a#list) = (case a of 0 ⇒ preSuc list | Suc n ⇒ n#(preSuc list))

consts subst :: (nat ⇒ nat) ⇒ form ⇒ form
primrec

subst r (PAtom p vs) = (PAtom p (map r vs))
subst r (NAtom p vs) = (NAtom p (map r vs))
subst r (FConj f g) = FConj (subst r f) (subst r g)
subst r (FDisj f g) = FDisj (subst r f) (subst r g)
subst r (FAll f) = FAll (subst (λ y. case y of 0 ⇒ 0 | Suc n ⇒ Suc (r n)) f)
subst r (FEx f) = FEx (subst (λ y. case y of 0 ⇒ 0 | Suc n ⇒ Suc (r n)) f)

constdefs finst :: form ⇒ var ⇒ form
finst body w ≡ subst (λ v . case v of 0 ⇒ w | Suc n ⇒ n) body

Sequents are formula lists. A numbered formula is a pair of a natural num-
ber and a formula. Numbered sequents are numbered formula lists. We define
mappings between sequents and numbered sequents.

types seq = form list

types nform = nat × form

types nseq = nform list

constdefs s-of-ns :: nseq ⇒ seq
s-of-ns ns ≡ map snd ns

constdefs ns-of-s :: seq ⇒ nseq
ns-of-s s ≡ map (λ x . (0 ,x)) s

The free variables of a sequent, the maximum of a list of free variables, and
a new variable are defined.

constdefs sfv :: seq ⇒ var list
sfv s ≡ flatten (map fv s)

consts maxvar :: var list ⇒ var
primrec

maxvar [] = 0
maxvar (a#list) = max a (maxvar list)

constdefs newvar :: var list ⇒ var
newvar vs ≡ Suc (maxvar vs)

3.3 Derivations

In addition to the rules in Fig. 1, we add the following rule to deal with the
degenerate case of the empty sequent. We note that we could simply terminate
the proof at this point, but that this rule ensures that the proofs in the rest of
the mechanisation are uniform.

`

Nil
`

Then to represent the rules, we use a function mapping the conclusion of a
rule to a list of premises.

consts subs :: nseq ⇒ nseq list
primrec

subs [] = [[]]
subs (x#xs) =

7

(let (m,f) = x in case f of
PAtom p vs ⇒ if NAtom p vs ∈ set (map snd xs) then [] else [xs@[(0 ,PAtom p vs)]]
| NAtom p vs ⇒ if (PAtom p vs) ∈ set (map snd xs) then [] else [xs@[(0 ,NAtom p vs)]]
| FConj f g ⇒ [xs@[(0 ,f)],xs@[(0 ,g)]]
| FDisj f g ⇒ [xs@[(0 ,f),(0 ,g)]]
| FAll f ⇒ [xs@[(0 ,finst f (newvar (sfv (s-of-ns (x#xs)))))]]
| FEx f ⇒ [xs@[(0 ,finst f m),(Suc m,FEx f)]])

Derivations are defined inductively wrt. this function. The additional natural
number indicates the depth of a node in the derivation tree, and aids inductive
arguments. We also make an abstracting definition of a predicate to recognise a
terminal sequent, that is, one that can be closed by an application of the rules
Ax,Ax.

consts deriv :: nseq ⇒ (nat × nseq) set
inductive deriv s
intros

init: (0 ,s) ∈ deriv s
step: (n,x) ∈ deriv s =⇒ y ∈ set (subs x) =⇒ (Suc n,y) ∈ deriv s

consts is-axiom :: seq ⇒ bool
primrec

is-axiom [] = False
is-axiom (a#list) = ((∃ p vs. a = PAtom p vs ∧ NAtom p vs ∈ set list)
∨ (∃ p vs. a = NAtom p vs ∧ PAtom p vs ∈ set list))

Our first task is to show that these derivations are sound wrt. first order
models.

3.4 Models

A first order model (M, I) is a set of elements M and an interpretation I of
the syntactic predicates Pj as predicates Pj over tuples (represented as lists) of
elements of the model. Which type should the elements of a model be drawn
from? We assert the existence of a universal type3.

typedecl U types model = U set × (pred ⇒ U list ⇒ bool)

An alternative would be to quantify over all models at all types. However,
type quantification is currently not supported in HOL. We would like to echo
Harrison [Har98] who notes the utility of type quantification in HOL [T.F92] in
a similar context.

The third semantic notion is that of an environment, which is an assignment
of elements in the model to free variables.

types env = var ⇒ U constdefs is-env :: model ⇒ env ⇒ bool
is-env MI e ≡ ∀ x . e x ∈ (fst MI)

Given a model and an environment, we can evaluate the truth of a formula,
using standard Tarski semantics.

consts feval :: model ⇒ env ⇒ form ⇒ bool

3 This is one of only two places where we make axiomatic assertions. Both could be
avoided by using existing type ind instead of declaring U .

8

primrec

feval MI e (PAtom P vs) = (let IP = (snd MI) P in IP (map e vs))
feval MI e (NAtom P vs) = (let IP = (snd MI) P in ¬ (IP (map e vs)))
feval MI e (FConj f g) = ((feval MI e f) ∧ (feval MI e g))
feval MI e (FDisj f g) = ((feval MI e f) ∨ (feval MI e g))
feval MI e (FAll f) = (∀ m ∈ (fst MI). feval MI (λ y. case y of 0 ⇒ m | Suc n ⇒ e n) f)
feval MI e (FEx f) = (∃ m ∈ (fst MI). feval MI (λ y. case y of 0 ⇒ m | Suc n ⇒ e n) f)

This extends to sequents, and finally we can say what it means for a sequent
to be valid.

consts seval :: model ⇒ env ⇒ seq ⇒ bool
primrec

seval MI e [] = False
seval MI e (x#xs) = (feval MI e x ∨ seval MI e xs)

constdefs svalid :: form list ⇒ bool
svalid s ≡ ∀ MI e. is-env MI e −→ seval MI e s

3.5 Soundness

We prove that the rules are sound, that is, that any sequent at the root of a
derivation is true in all models. Conceptually this is done by induction on the
finite derivation, from leaf to root.

lemma soundness: finite (deriv (ns-of-s s)) =⇒ svalid s

For each rule, we need a lemma stating that if the premises are true in
all models, then so too is the conclusion. We treat the most interesting case
of the ∀ rule, which we prove for arbitrary fresh u. This case depends on the
following lemma, which states roughly that evaluating [u/x]f in environment e
is equivalent to evaluating f in an environment e(x := e u), i.e. in the same
environment except that the free variable x gets mapped to whatever u was
mapped to by the original environment e.

lemma feval-finst: feval MI e (finst A u) = feval MI (nat-case (e u) e) A

The statement of the main lemma is as follows.

lemma sound-FAll: u /∈ set (sfv (FAll f #s)) =⇒ svalid (s@[finst f u]) =⇒ svalid (FAll f #s)

Suppose we wish to show that ∀x.f is true in all models wrt. all environments
e, and we assume that for u fresh wrt. f , [u/x]f is true in all models wrt. all
environments e′. To show ∀x.f is true wrt. environment e, we must show that for
all m, f is true wrt. environment e(x := m). From the assumption, choosing e′ to
be e(u := m), we get that [u/x]f is true wrt. environment e(u := m). By lemma
feval-finst, this is equivalent to f being true wrt. environment e(u := m)(x :=
(e(u := m) u)), and this environment is simply e(u := m)(x := m). Since u is
fresh wrt. f , we actually have that f is true wrt. environment e(x := m), which
is what we had to show. This is the essential idea behind the proof of the main
lemma. An Isar proof of this lemma is included in the development, but omitted
here for space reasons.

9

3.6 Failing Path

We wish to show completeness of our rule system wrt. validity, i.e. if some
sequent s is true in all models, then it is provable. Alternatively, if s is not
provable, we must exhibit a model where s is false. If s is not provable, then
when we attempt to prove it using the rules of our system, we will not end up
with a finite derivation. If the derivation tree is infinite then, since it is finitely
branching, we can use König’s lemma to find an infinite path in the tree. We call
this infinite path a failing path. We define a failing path as a function from a
derivation tree to a path through the derivation tree. Paths are simply functions
with domain nat.

consts failing-path :: (nat × nseq) set ⇒ nat ⇒ (nat × nseq)
primrec

failing-path ns 0 = (SOME x . x ∈ ns ∧ fst x = 0 ∧ infinite (deriv (snd x))
∧ ¬ is-axiom (s-of-ns (snd x)))

failing-path ns (Suc n) = (let fn = failing-path ns n in SOME fsucn. fsucn ∈ ns
∧ fst fsucn = Suc n ∧ (snd fsucn) ∈ set (subs (snd fn)) ∧ infinite (deriv (snd fsucn))
∧ ¬ is-axiom (s-of-ns (snd fsucn)))

If f is the failing path for deriv s then the essential property of f is given in
the following.

lemma (in loc1) is-path-f : infinite (deriv ns) =⇒ ∀ n. f n ∈ deriv ns ∧ fst (f n) = n
∧ (snd (f (Suc n))) ∈ set (subs (snd (f n))) ∧ infinite (deriv (snd (f n)))

Note that HOL is sufficiently powerful that we can simply define a failing
path through a tree using the choice operator, avoiding an explicit invocation of
König’s lemma.

3.7 Contains, Considers

We now wish to talk about when a path f contains a numbered formula nf at
position n. We also introduce the notion of when a formula is considered at a
point n in a path, which is when the formula is at the head of the sequent at
position n.

constdefs contains :: (nat ⇒ (nat × nseq)) ⇒ nat ⇒ nform ⇒ bool
contains f n nf ≡ nf ∈ set (snd (f n))

constdefs considers :: (nat ⇒ (nat × nseq)) ⇒ nat ⇒ nform ⇒ bool
considers f n nf ≡ case snd (f n) of [] ⇒ False | (x#xs) ⇒ x = nf

3.8 Models 2

A falsifying model will in general consist of at least countably many elements.
So far, we have said nothing about the size of our universe type. We require that
it is infinite so that it can contain an infinite falsifying model. We assert the
existence of an injective function from nat to U 4.

4 If we had taken the existing HOL type ind instead of declaring U , then we could
avoid asserting this axiom, and our development would be conservative.

10

consts ntou :: nat ⇒ U

axioms ntou: inj ntou

constdefs uton :: U ⇒ nat
uton ≡ inv ntou

3.9 Falsifying Model from Failing Path

We are now in a position to define a falsifying model, given an infinite derivation.

constdefs model :: nseq ⇒ model
model ns ≡ (range ntou, λ p ms. (let f = failing-path (deriv ns) in
(∀ n m. ¬ contains f n (m,PAtom p (map uton ms)))))

The point of the model is that any formula contained in a sequent on the
failing path f gets false in the model. This is proved by induction on the size of
the formula.

lemma [[f = failing-path (deriv (ns-of-s s)); infinite (deriv (ns-of-s s)); contains f n (m,A)]]
=⇒ ¬ feval (model (ns-of-s s)) ntou A

Let us treat the case that (∃x.P x)n appears on f . Then we know that
(∃x.P x)0 appears on f . Then (∃x.P x)0 eventually gets considered, and P x0

and (∃x.P x)1 appears on f . Then (∃x.P x)1 eventually gets considered, and
P x1 and (∃x.P x)2 appears on f . Continuing in this way, we see that for all
n, P xn appears on f . Applying the induction hypothesis to each of these, we
see that for all n, the interpretation of P xn, i.e. P n, is false in the model. So
“there exists an n such that P n” is false in the model, and so ∃x.P x gets false
in the model.

3.10 Completeness

Since the sequent s which gave rise to the infinite derivation appears on the
failing path at position 0, and all formulas in s get false, it too must get false in
the model. We have thus found our falsifying model, and s could never have been
proved using any sound system of rules. The completeness lemma is as follows.

lemma completeness: infinite (deriv (ns-of-s s)) =⇒ ¬ svalid s

3.11 Soundness and Completeness

We can combine our soundness and completeness results to get a lemma which
connects validity and provability.

lemma soundComplete: svalid s = finite (deriv (ns-of-s s))

3.12 Algorithm and Computation

The rules of our system are deterministic. We therefore want to turn the rules
into a deterministic algorithm. This algorithm checks to see if the derivation is

11

finite by repeatedly applying the rules to all sequents at depth n, to obtain the
list of sequents at depth n + 1. If there are no sequents at a given depth, then
all branches have been closed and we have found our finite derivation.

We define a global version of the algorithm as a function that takes an initial
sequent s, and a number n, and gives back the list of sequents at depth n in the
derivation rooted at s. We need a step function that takes a list of sequents at
depth n in the derivation, and gives back a list of sequents at depth n + 1.

constdefs step :: nseq list ⇒ nseq list
step ≡ λ s. flatten (map subs s)

We are going to iterate this step function repeatedly, so we need an iteration
function.

consts iter :: (′a ⇒ ′a) ⇒ ′a ⇒ nat ⇒ ′a — fold for nats
primrec

iter g a 0 = a
iter g a (Suc n) = g (iter g a n)

So iterating the step function n times on an initial sequent s gives the sequents
at depth n in the derivation.

lemma ∀ x . ((n,x) ∈ deriv s) = (x ∈ set (iter step [s] n))

Now we know that the derivation from s is finite iff there is some n such
that there are no sequents at depth n in the derivation, in which case the nth
iteration of the step function on s will be empty.

lemma finite-deriv : finite (deriv s) = (∃ m. iter step [s] m = [])

Now the following is the definition in OCaML of a function that searches
the natural numbers to see if there is an n such that the nth iteration of the
subs function on an initial sequent s is empty. By lemma finite-deriv, if the
derivation is finite, then there is some n such that the nth iteration is empty,
and the algorithm will terminate. However, if the derivation is not finite, then
our algorithm will fail to terminate, searching ever increasing n.

let rec prove’ s n = (if iter step s n = [] then true else prove’ s (n+1));;

let prove s = prove’ [ns_of_s s] 0;;

There is an obvious source of inefficiency in that, having computed the nth
iteration, we throw the result away and compute the n + 1 th iteration from
scratch. The following is an equivalent, but much more efficient implementation.

let rec prove’ s = (if s = [] then true else prove’ (step s));;

let prove s = prove’ [ns_of_s s];;

When we come to replicate this in HOL we run into a problem. HOL is
a logic of total functions, whilst the general recursive OCaML definitions just
given are clearly partial. However, we can improve our confidence in the OCaML
definitions as follows. Firstly, we define our function prove′ in a non-constructive
way.

12

constdefs prove ′ :: nseq list ⇒ bool
prove ′ s ≡ ∃ m. iter step s m = []

constdefs prove :: seq ⇒ bool
prove s ≡ prove ′ [ns-of-s s]

From lemma finite-deriv, prove s corresponds to the finiteness of the deriva-
tion from s.

lemma finite-deriv-prove: finite (deriv (ns-of-s s)) = prove s

Note that together with lemma soundComplete we have that validity of s is
equivalent to prove s. We can even show that prove’ satisfies the relation implied
by the general recursive OCaML definition.

lemma prove ′: prove ′ s = (if s = [] then True else prove ′ (step s))

At this point, we believe that if the OCaML function terminates with true,
then the derivation is finite. Conversely, we believe that if the derivation is
finite, there is some n such that the nth iteration is empty, and our algorithm
will discover this at stage n and terminate with true. On the other hand, we
also believe that if the derivation is not finite, then the algorithm will fail to
terminate. We have shown formally in HOL that any function that claimed to do
this must satisfy the relation implied in lemma prove’. However, there are many
functions that satisfy this recursive equation, such as the constant function of one
argument that returns true, so that our beliefs have not been fully formalised. To
go further would require some explicit notion of termination, and some way of
handling general recursive definitions formally in HOL. We discuss this further
in Sect. 5.

To execute the prover in Isabelle, we can rewrite the prove function to prove’,
then use the lemma prove’ to rewrite prove’. Further rewriting can occur. Ex-
amining the definitions, one sees that all functions involved are computable by
rewriting. Of course, this rewriting will not terminate on some inputs, but if it
does terminate with the output True, then the sequent is valid, and this will have
been formally proved inside Isabelle. In terms of performance, one can comfort-
ably run the verified prover inside Isabelle on small examples using the rewriting
engine5. Alternatively, we have transported the definitions to OCaML, to give
a directly executable program. For instance, the last few clauses of the OCaML
program are as follows.

let subs t = match t with
[] -> [[]]

| (x::xs) -> let (m,f) = x in match f with
PAtom (p,vs) -> if mem (NAtom (p,vs)) (map snd xs) then [] else [xs@[(0,PAtom (p,vs))]]

| NAtom (p,vs) -> if mem (PAtom (p,vs)) (map snd xs) then [] else [xs@[(0,NAtom (p,vs))]]
| FConj (f,g) -> [xs@[(0,f)];xs@[(0,g)]]
| FDisj (f,g) -> [xs@[(0,f);(0,g)]]
| FAll f -> [xs@[(0,finst f (newvar (sfv (s_of_ns (x::xs)))))]]
| FEx f -> [xs@[(0,finst f m);(suc m,FEx f)]];;

let step = fun s -> flatten (map subs s);;

let rec prove’ s = (if s = [] then true else prove’ (step s));;

let prove s = prove’ [ns_of_s s];;

5 This applies to the newest version: the original was somewhat inefficient.

13

4 Related Work

Completeness for first order logic has been mechanised several times, but without
focusing on executability. In HOL Light, Harrison develops basic model theory
for first order predicate logic in [Har98], mechanising a textbook by Kreisel and
Krivine, but without addressing executability considerations. In Isabelle/HOL,
Berghofer has also tackled classical first order predicate logic [Ber02], mechanis-
ing a textbook by Melvin and Fitting, again without focusing on executability.

In ALF, Persson has mechanised a constructive proof of intuitionistic pred-
icate logic [Per96], but we were unable to trace the thesis. From comments in
other work, it appears that Persson formalised the semantics of FOL formu-
lae wrt. formal topology, so that the development is presumably substantially
different from that here.

Completeness for propositional logic has also been tackled several times, al-
though these results tend to be substantially easier to mechanise. There is a
line of work by Underwood et al. in the NuPRL system. Primarily this involves
mechanised proofs of completeness for intuitionistic propositional logic. The fi-
nal paper in this line appears to be [Cal99], which usefully references much
of the previous work. Included in this work is a paper [Und95] that discusses
computational aspects of classical reasoning, applied to completeness results for
intuitionistic logic, although these results were not mechanised. In Coq there has
been much work on mechanising propositional logic. For instance, Weich tackles
intuitionistic propositional logic in [Wei01].

The basic idea for this type of completeness proof is found in the work of
Henkin [Hen49], where the author introduces the then radical idea of utilising
the terms of the logical system as the elements of the model. Such a model is
usually called a Henkin-model. The proof proceeds by successively extending the
language and the term model until a maximally consistent and term complete
model is formed. It is a relatively short step from here to defining a model directly
from a failing derivation, as we have done here. However, we are unable to trace
the paper in which this step appears for the first time. A succinct presentation of
this approach is [WW92]. This work was originally mechanised in Isabelle/HOL
by Margetson [Mar99]. This was then remechanised by Ridge, who modified the
logical system, simplified and polished the proofs, and extended the work so that
the prover is executable by rewriting inside Isabelle.

Less closely related is work on verifying proof checkers. For instance, Pollack
has a verified type checker in [Pol95], and further work with McKinna is reported
in [MP99].

More generally, this work is an exercise in mechanising results in metamath-
ematics. A good example of a much more comprehensive mechanisation in this
area is the work of Shankar on mechanising Gödel’s incompleteness theorem
[Sha94].

14

5 Conclusion and Future Work

We have presented a deterministic system of first order logic, proved soundness
and completeness, and captured the system as an algorithm that can be directly
executed inside Isabelle using the rewrite system. There are many extensions
that might be considered.

Most immediately, we claim that if the derivation is finite, then the algo-
rithm will terminate with true. To make this claim fully formal would require a
treatment of general recursive definitions and explicit non-termination in HOL.
One approach would be to work with a formalised semantics for OCaML, or
some other suitable language. A more abstract approach would be to apply the
techniques of LCF, a logic which explicitly deals with termination and recursive
definitions.

Currently, there is a “leap of faith” [Har95] required to bridge the gap between
the formalised definitions and those in OCaML. As we have shown, HOL is
already a powerful language for expressing functional algorithms. A more radical
approach than mechanising a theory of recursive functions inside HOL, is simply
to carve out an executable subset of HOL itself. This is harder than it appears
because one must treat general recursive definitions.

Terms in our system are simply variables. Although theoretically this is no
restriction, it would be interesting to extend the mechanisation to deal with
full first order terms. We might consider a representation of terms such as the
following.

datatype folterm = Var nat | App nat (folterm list)

It is then not too difficult to enumerate these in an effective way. The next
extension is to equality. Again, the lack of equality is theoretically no restriction,
but it is usual to treat equality as a special relation, rather than axiomatising
its properties.

We can also seek to extend the formalisation to cover other results in proof
theory and automatic theorem proving, or as the basis of a more substantial
verified theorem prover. Although we have not stated the result explicitly, our
system does not use the Cut rule, so that the proofs generated are Cut free. Cut

elimination is one of the main results of proof theory. Our proofs represent a
semantic proof of Cut elimination. It would be interesting to tackle a syntactic
proof, such as that by Pfenning [Pfe00]. Indeed, Pfenning cites Cut elimination
as a challenge problem for formalisation. An approach along our current lines
would have advantages over Pfenning’s, in that the embedding is deeper, and
properties such as coverage could be proven. Resolution is perhaps most easily
treated as a variant of proof search in a system such as G3c [Avr93]. If syntactic
Cut elimination were in place, a proof of completeness for a resolution based
system would be relatively straight forward. Alternatively, one could try for a
direct semantic proof. Mechanisation of these results could provide benefits to
the community, allowing proposed improvements in algorithms to be formally
assessed in terms of completeness preservation.

15

We alluded to the use of the reflection mechanism to incorporate verified code
into the kernel of a theorem prover. It would be interesting to port the proofs to a
system that supported such a feature, and investigate issues such as performance.
Previous versions of this paper used the word “efficient” in the title, which
referred to the fact that the algorithm was tail recursive, without backtracking.
The algorithm does not use unification to select quantifier instantiations, and so
is roughly comparable to Gilmore’s procedure in terms of performance. In this
sense, it is not competitive with current unification based approaches. It would
be interesting to examine the performance of the system when extended to use
unification.

The mechanisation described here can be found at the Archive for Formal
Proofs [afp], which also includes the related OCaML code. Alternatively, the
newest version is maintained at Ridge’s homepage [Rid].

Finally, we would like to thank the anonymous reviewers for their extremely
close reading which uncovered several inadequacies in a previous version.

References

[afp] The archive of formal proofs. http://afp.sourceforge.net/.
[Avr93] Arnon Avron. Gentzen-type systems, resolution and tableaux. Journal of

Automated Reasoning, 10(2):265–281, 1993.
[Ber02] Stefan Berghofer. Formalising first order logic in isabelle, 2002. http://www4.

in.tum.de/∼streckem/Admin/club2 berghofer model theory.pdf.
[Cal99] James Caldwell. Intuitionistic tableau extracted. In Proceedings of Interna-

tional Conference on Automated Reasoning with Analytic Tableaux and Re-
lated Methods (TABLEAUX’99), volume 1617 of LNAI, pages 82–96. Springer-
Verlag, 1999. http://www.nuprl.org/documents/Caldwell/tableaux99.html.

[Har95] John Harrison. Metatheory and reflection in theorem proving: A survey and
critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cam-
bridge, UK, 1995. Available on the Web as http://www.cl.cam.ac.uk/users/
jrh/papers/reflect.dvi.gz.

[Har98] John Harrison. Formalizing basic first order model theory. In Jim Grundy and
Malcolm Newey, editors, Theorem Proving in Higher Order Logics: 11th Inter-
national Conference, TPHOLs’98, volume 1497 of Lecture Notes in Computer
Science, pages 153–170, Canberra, Australia, 1998. Springer-Verlag.

[Hen49] Leon Henkin. The completeness of the first-order functional calculus. The
Journal of Symbolic Logic, 14:159–166, 1949.

[Mar99] James Margetson. Completeness of the first order predicate calculus. 1999.
Unpublished description of formalisation in Isabelle/HOL of [WW92].

[MP99] J. McKinna and R. Pollack. Some lambda calculus and type theory formalized.
Journal of Automated Reasoning, 23(3–4), November 1999.

[Per96] Henrik Persson. Constructive completeness of intuitionistic predicate logic.
1996. http://www.cs.chalmers.se/Cs/Research/Logic/publications.mhtml.

[Pfe00] Frank Pfenning. Structural cut elimination I. intuitionistic and classical logic.
Information and Computation, 157(1/2):84–141, March 2000.

[Pol95] Robert Pollack. A verified typechecker. In M.Dezani-Ciancaglini and
G.Plotkin, editors, Proceedings of the Second International Conference on
Typed Lambda Calculi and Applications, TLCA’95, Edinburgh, volume 902 of
LNCS. Springer-Verlag, April 1995.

16

[Qui62] Willard Van Orman Quine. Mathematical Logic. Harper and Row, 1962.
[Rid] Tom Ridge. Informatics homepage. http://homepages.inf.ed.ac.uk/s0128214/.
[Sha94] N. Shankar. Metamathematics, Machines, and Gödel’s Proof. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, Cam-
bridge, UK, 1994. http://www.csl.sri.com/users/shankar/goedel-book.html.

[T.F92] T.F. Melham. The HOL logic extended with quantification over type variables.
In L.J.M. Claesen and M.J.C. Gordon, editors, International Workshop on
Higher Order Logic Theorem Proving and its Applications, pages 3–18, Leuven,
Belgium, 1992. North-Holland.

[Und95] Judith Underwood. Tableau for intuitionistic predicate logic as metatheory.
In Peter Baumgartner, Reiner Hähnle, and Joachim Posegga, editors, Theorem
Proving with Analytic Tableaux and Related Methods, volume 918 of Lecture
Notes in Artificial Intelligence. Springer, 1995. http://www.lfcs.inf.ed.ac.uk/
reports/95/ECS-LFCS-95-321/.

[Wei01] Klaus Weich. Improving Proof Search in Intuitionistic Propositional Logic.
Logos-Verlag, 2001. http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=
767&lng=eng&id=.

[WN04] Martin Wildmoser and Tobias Nipkow. Certifying machine code safety: Shal-
low versus deep embedding. In K. Slind, A. Bunker, and G. Gopalakrishnan,
editors, Theorem Proving in Higher Order Logics (TPHOLs 2004), volume
3223, pages 305–320, 2004.

[WW92] S. S. Wainer and L. A. Wallen. Basic proof theory. In S. S. Wainer, P. Aczel,
and H. Simmons, editors, Proof Theory: A Selection of Papers from the Leeds
Proof Theory Programme 1990, pages 3–26. Cambridge University Press, Cam-
bridge, 1992.

[ZTA+] Richard Zach, Neil Tennant, Arnon Avron, Michael Kremer, Charles Par-
sons, and Timothy Y. Chow. The rule of generalization in fol, and pseudo-
theorems. Thread on the FOM mailing list. http://www.cs.nyu.edu/pipermail/
fom/2004-September/008513.html.

