SibylFS and ImpFS: formal specification and
implementation for filesystems

Dr Tom Ridge

REMS workshop, Cambridge, 2016-05-27

What have we done? SibylFS

v

SibylFS, a filesystem specification and test oracle (POSIX, Mac,
Linux and BSD filesystems)

Spec formal, mechanized, written in Lem (translated to HOL,
Isabelle, OCaml)

Test oracle can analyse traces of real-world filesystems

v

v

v

Tested lots of combinations of libc/OS/filesystem

Amusing application

» We presented at SOSP'15
» Also at that venue was a paper on FSCQ), a filesystem verified
in Coq

f dsheets commented on 3 Oct 2015

On an empty file system built from 27c4678 , running

#include <unistd.h>
#include <fcntl.h>

int main() {
close(creat ("spaaaaaace")) ;
truncate("spaaaaaace”, 10) ;

return 8;

}

results in a file, spaaaaaace , which contains the text spaaaaaace instead of 10 null bytes. For
applications which expect POSIX, OS X, Linux, or BSD behavior when using truncate to extend files, this
unexpected data can result in incorrectly formatted files.

zeldovich commented on 3 Oct 2015 Owner

Thanks; | will take a look. Sounds like we might have gotten the spec wrong.

Structure of the specification

> This is relevant to what we are trying to do now. ..

Call to libc

SibylFS spec
(3 or 4 layers)

Dir_heap // this is essentially two maps

» Dir_heap is 2 maps, one from file ids to files, one from
directory ids to directories

What are we doing now? ImpFS

» ImpFS, a verified filesystem implementation (from the start,
this was what | really wanted to build)
> Based on B-trees

What are B-trees?

> A balanced tree-like datastructure, implementing a map:

» This shows the keys; in the leaves, we also have values
associated with each key; the keys in the nodes allow you to
navigate to a desired key in a leaf

Why are B-trees important in filesystems (and databases
etc)?

» Nodes are mapped onto blocks

» Block reads are slow compared to everything else

> Tree structure minimizes the number of blocks that are
traversed (read from disk) to locate a value for a given key

» N.B. two datastructures - the tree on disk, and the partial tree
in memory (e.g. the stack of blocks leading to a desired leaf)

» Moreover, if we update a map (add/remove a key) we can
share most of the blocks with the previous version of the map

How to get a verified filesystem?

» Take the SibylFS specification

» Remove non-determinism, so it becomes an executable
in-memory filesystem

» Implement the two maps at the bottom of the spec layers, and
interface to a block device, to get a “real” filesystem using

block storage; B-trees are used to implement maps on top of a
block device

Structure of ImpFS

Call to 1libc

I
v

SibylFS spec (determinised)

I
v

Dir_heap // two maps, implemented using B-trees

I
v

Block device

Of course, it is never that easy (challenges)

» Block layer (asynchronous; reorders writes; syncable; behaviour
on crash; on-disk layout of data; pointers everywhere etc)

» Concurrency (we want an arbitrary number of B-trees
concurrently using the block layer, ensuring all invariants are
respected)

» B-tree implementation and proof of correctness taking
account of block layer and concurrency requirements (I am
most proud of this bit)

» Caching (want to avoid writes to block layer where possible)

» GC for unreachable blocks

» We want bounded memory usage (so have fixed size block
caches etc)

» Performance

» “Semantic” optimizations

» Extra features (snapshotting etc)

ImpFS status

» Working on finishing the B-tree implementation and proof
(should be an OCaml library and Isabelle theories in next few
months)

» We hope for working filesystem prototype before October

Reuse

B-tree proofs are very nice, and hopefully will form the basis for
modern descriptions of this datastructure

» B-tree implementation (OCaml, Scala etc)

» ImpFS (in OCaml) could be used as a filesystem for Mirage, or

for per-application private filesystems, or for filesystems on
non-traditional block devices (network connections etc)
B-tree can be used in many other applications (databases;
per-application persistent kv maps etc)

End

