
SibylFS and ImpFS: formal specification and
implementation for filesystems

Dr Tom Ridge

REMS workshop, Cambridge, 2016-05-27



What have we done? SibylFS

I SibylFS, a filesystem specification and test oracle (POSIX, Mac,
Linux and BSD filesystems)

I Spec formal, mechanized, written in Lem (translated to HOL,
Isabelle, OCaml)

I Test oracle can analyse traces of real-world filesystems
I Tested lots of combinations of libc/OS/filesystem



Amusing application

I We presented at SOSP’15
I Also at that venue was a paper on FSCQ, a filesystem verified

in Coq



Structure of the specification
I This is relevant to what we are trying to do now. . .

Call to libc
|
V
-------
SibylFS spec
(3 or 4 layers)
-------
|
V
-------
Dir_heap // this is essentially two maps
-------

I Dir_heap is 2 maps, one from file ids to files, one from
directory ids to directories



What are we doing now? ImpFS

I ImpFS, a verified filesystem implementation (from the start,
this was what I really wanted to build)

I Based on B-trees



What are B-trees?

I A balanced tree-like datastructure, implementing a map:

I This shows the keys; in the leaves, we also have values
associated with each key; the keys in the nodes allow you to
navigate to a desired key in a leaf



Why are B-trees important in filesystems (and databases
etc)?

I Nodes are mapped onto blocks
I Block reads are slow compared to everything else
I Tree structure minimizes the number of blocks that are

traversed (read from disk) to locate a value for a given key
I N.B. two datastructures - the tree on disk, and the partial tree

in memory (e.g. the stack of blocks leading to a desired leaf)
I Moreover, if we update a map (add/remove a key) we can

share most of the blocks with the previous version of the map



How to get a verified filesystem?

I Take the SibylFS specification
I Remove non-determinism, so it becomes an executable

in-memory filesystem
I Implement the two maps at the bottom of the spec layers, and

interface to a block device, to get a “real” filesystem using
block storage; B-trees are used to implement maps on top of a
block device



Structure of ImpFS

Call to libc
|
V
----
SibylFS spec (determinised)
----
|
V
----
Dir_heap // two maps, implemented using B-trees
----
|
V
----
Block device
----



Of course, it is never that easy (challenges)

I Block layer (asynchronous; reorders writes; syncable; behaviour
on crash; on-disk layout of data; pointers everywhere etc)

I Concurrency (we want an arbitrary number of B-trees
concurrently using the block layer, ensuring all invariants are
respected)

I B-tree implementation and proof of correctness taking
account of block layer and concurrency requirements (I am
most proud of this bit)

I Caching (want to avoid writes to block layer where possible)
I GC for unreachable blocks
I We want bounded memory usage (so have fixed size block

caches etc)
I Performance
I “Semantic” optimizations
I Extra features (snapshotting etc)



ImpFS status

I Working on finishing the B-tree implementation and proof
(should be an OCaml library and Isabelle theories in next few
months)

I We hope for working filesystem prototype before October



Reuse

I B-tree proofs are very nice, and hopefully will form the basis for
modern descriptions of this datastructure

I B-tree implementation (OCaml, Scala etc)
I ImpFS (in OCaml) could be used as a filesystem for Mirage, or

for per-application private filesystems, or for filesystems on
non-traditional block devices (network connections etc)

I B-tree can be used in many other applications (databases;
per-application persistent kv maps etc)



End


