
Netsem, Ott, Lem, SibylFS and Verified Parsing:
Specification and Validation at Scale

Dr Tom Ridge

2016-04-20

Topics

Talk will include
I Description of the projects in the title, and some interesting

aspects of each
I General comments about specification, validation and proof for

real-world systems
I Because I know some people are also interested in formalized

proof systems, I will talk a bit about work I did in this area
(mostly unpublished)

Outline of talk

Roughly, I will present things in chronological order
I Early work
I Netsem (a large, formal specification of UDP,TCP/IP and

ICMP)
I POPLmark (can theorem provers handle large formalizations?)
I Ott and Lem (tools for large formalizations)
I SibylFS (a large, formal specification of file systems)
I Current/future work

Early stuff

I There are some theories in the Archive of Formal Proofs e.g. a
version of Ramsey’s theorem (read Boolos and Jeffrey C+L!)

I Soundness and completeness for FOL (with Margetson - he did
most of the work), with an executable (within Isabelle, or via
extracted code), complete proof search for FOL

I This is based on Wainer and Wallen BPT
I N.B. for FOL proof search, resolution is probably “better” than

tableaux (?)

I Formalized proof theory e.g. Craig’s interpolation theorem
(unpublished)

I Based on Girard PT+LC

I PhD: applied formal methods

c. 2005

I Motivation: I really want to improve the systems we currently
use

I Observation: formalization (+ mechanization) is an extremely
effective way of developing correct software (really, the only
way)

I Observation: automation is important, but for non-trivial
systems you need interactive proof

I Observation: (as any fule kno) F+M takes a long time

Why does it take so long?
I Lots of details; “obvious” results can be painful to get the

machine to understand
I Logics are inflexible in various ways
I Tools are immature
I Formalized libraries are quite small still; often they involve

shortcuts which limit their reuse
I Proofs

I Existing “proofs” are not proofs at all (at best, optimistic; some
notable exceptions)

I Existing proofs are unsuitable for mechanization (even if they
are roughly correct)

I So, you effectively have to come up with your own proofs, and
this takes time; it also requires formalizers to be fairly bright,
and so the talent pool is fairly small, which matters

I Community obsessed with formalizing everything (without
assumptions), which makes progress very slow

I Why not have a formal repository of defns and theorem
statements? Because we haven’t got the right logics/formalisms
for medium/large scale formalization (maybe more later)

So what next?

I Apply F+M to real-world systems; ideally produce systems that
are better than existing systems (features, performance,. . .),
and proved correct

I Try to solve the engineering problems (reduce the effort)
I Try to see what the other problems are
I Take a long-term view
I Focus on the components and interfaces that are most
“valuable”

Outline of talk

I Early work
I Netsem
I POPLmark
I Ott and Lem
I SibylFS
I Current/future work

First big project: Netsem

I 2001-c.2009 (some work still ongoing), Peter Sewell et al.,
http://www.cl.cam.ac.uk/~pes20/Netsem/

I “apply formal methods to the network stack”
I develop a spec of UDP+TCP/IP+ICMP
I test spec against real-world implementations - to validate spec,

and discover bugs in implementations

http://www.cl.cam.ac.uk/~pes20/Netsem/

Netsem TCP/IP specification

I Concurrency, distribution clearly important areas of computer
science, particularly with the arrival of the internet

I Academia: pi calculus etc; my uninformed view: very useful,
but no real attempt to address e.g. host and network failure

I Real-world network programming uses TCP/IP, and has to take
these issues seriously; particularly timers, timeouts etc

Netsem TCP/IP specification, artefacts

Netsem workflow

Netsem TCP/IP specification

I Written in HOL (HOL4), with various specification “idioms”
(“relational monad”)

I Relatively close correspondence to BSD implementation code
(probably a mistake)

I Extensively documented
I Available at http://www.cl.cam.ac.uk/~pes20/Netsem/ and

now on GitHub https://github.com/PeterSewell/netsem

http://www.cl.cam.ac.uk/~pes20/Netsem/
https://github.com/PeterSewell/netsem

Spec excerpt

This describes a host transition. This is lifted to the “network” level
to give transitions of a network of machines.

Test infrastructure and oracle

I Written in SML, OCaml, C, and HOL (with perl, bash etc)
I Infrastructure to run distributed test cases (multiple hosts

communicating over network) and record (distributed) traces.
Logging of events on wire, in TCP/IP stack and at sockets API
on every host, and merged to form a single global trace

I Oracle, to check traces against the spec

Formal foundation: labelled transition systems

I (S, L,S0,T) where S0 ⊆ S; T ⊆ S × L× S
I Notation: s l→ s ′ means (s, l , s ′) ∈ T
I T defined by clauses of the form: P(s, l , s ′) −→ (s l→ s ′)
I A trace is s0

l1→ s1
l2→ s2 The spec tells you which of

these are “OK” and which not.
I Each state s ∈ S describes a network of machines, and the

TCP/IP, UDP and ICMP packets on the wires
I Observation: LTS/small-step operational semantics is a very

basic and general formalism; it is usually my go-to formalism

Example trace

https://github.com/PeterSewell/netsem/blob/master/
demo-traces/trace1741#L87-L112
Or here

https://github.com/PeterSewell/netsem/blob/master/demo-traces/trace1741#L87-L112
https://github.com/PeterSewell/netsem/blob/master/demo-traces/trace1741#L87-L112
example_trace.html

Problem (partial states and labels, partial traces)
A trace is s0

l1→ s1
l2→ s2 . . .

I The event logging infrastructure observed partial details of the
states si

I And partial details of the labels/events li
I And some events were not observable (internal kernel

transitions, τ events)

So the checker was given information like:
s0

l1→ s1(partial) ?→ s2 (?→)? s? (?→)? si . . .
And had to figure out the complete trace as above.

I When searching for such a trace, the nondeterminism is huge
I The test oracle was implemented in SML, using the symbolic

execution engine of HOL4, and the HOL4 specification (so
guaranteed sound, but slow)

Result: checking traces was very very slow e.g. 2500 hours to check
1000 traces

Possible solution: logging infrastructure should record
everything

1. s0
l1→ s1(partial) ?→ s2 (?→)? s? (?→)? si . . .

2. s0
l1→ s1

l2→ s2 . . .

We don’t want (1), we do want (2). This is maybe possible with
current kernel tracing technology, but likely that parts of the si are
still partial/ symbolic.

Problem: spec not suitable for checking traces

I Suppose we have s l→ s ′ where we have full information
about s, l , s ′.

I The specification is given in the form P(s, l , s ′) −→ (s l→ s ′)
I This is a specification. There is no guarantee that it is

possible to compute whether P(s, l , s ′) is satisfied or not.
I For Netsem, we wrote transformations to transform the spec

into a form that could be executably checked, but this was ad
hoc and painful.

Other problems

I Spec large and unwieldy (partly because it stuck closely to
BSD code structure)

I Hard to debug spec (partly because it stuck closely to BSD
code structure, partly because of a lack of tools, partly because
things took so long)

Netsem was painful; I don’t want to do that again

Outline of talk

I Early work
I Netsem
I POPLmark
I Ott and Lem
I SibylFS
I Current/future work

Detour: Mechanized Metatheory for the Masses: The
POPLmark Challenge

I Sewell et al., 2005, “Mechanized Metatheory for the Masses:
The POPLmark Challenge”

I Are theorem provers up to the task of mechanizing PL
research? (Really: are TPs up to the task of mechanizing
certain areas of CS research which involve intricate
syntax-heavy proofs)

I Case study: System F-sub
I Quite a few solutions submitted (about 10)
I Current status

I Pierce et al., 2008, “It Is Time to Mechanize Programming
Language Metatheory”

I 2015: Most (?) POPL papers are accompanied by mechanized
artefacts

Unpublished work

I I did the POPLmark challenge in HOL4, using a named
representation and explicit alpha variance in lemma statements
when needed

I I focused on making the proofs human readable, and my feeling
is that they are very nice proofs

I Overall the attempt was almost successful, but there was one
point where the proof really needed equality of alpha-equivalent
terms, and stating the lemmas using explicit alpha was just too
painful.

I An alternative would be to induct on “sizes” of terms and
derivations, but of course this makes the proofs slightly less
nice.

Thoughts

I All the major theorem provers can handle this sort of case study
I For me, De Bruijn is clearly the most successful representation

I Reuse is potentially a problem because the same lemmas have
to be proved for each new datatype-with-binding; machinery
helps here, or moving to a more general setting (e.g. set theory)

I With the exception of De Bruijn representations, binding is
problematic because of the desire for equality of
alpha-equivalent terms

I And theorem provers such as HOL4 are very bad at quotient
types (is Coq better here? probably not)

I So maybe use De Bruijn; if De Bruijn is not suitable (e.g. lots
of datatypes-with-binding), one might consider Pitts-style
nominal approaches via Nominal Isabelle (because the
machinery proves a lot of lemmas for you)

Also around this time, some more unpublished work

I Type soundness for various systems
I Some attempts at formalizing cut elimination, Craig’s

interpolation theorem etc
I Many attempts at formalizing various approaches to binding
I Some comments in a minor workshop “Workshop on

Mechanizing Metatheory”
http://www.tom-ridge.com/resources/doc/ridge07wmm.pdf

http://www.tom-ridge.com/resources/doc/ridge07wmm.pdf

Outline of talk

I Early work
I Netsem
I POPLmark
I Ott and Lem
I SibylFS
I Current/future work

What is Ott?

I Ott, c. 2006-? http://www.cl.cam.ac.uk/~pes20/ott/
I “Ott is a tool for writing definitions of programming languages

and calculi”
I Write a definition in a .ott file, and get output in tex, Isabelle,

Coq, HOL4
I Disclaimer: I was a user, not a developer

http://www.cl.cam.ac.uk/~pes20/ott/

Example

metavar termvar, x ::= {{ com term variable }}
{{ isa string}} {{ coq nat}} {{ hol string}} {{ coq-equality }}
{{ ocaml int}} {{ lex alphanum}} {{ tex \mathit{[[termvar]]} }}

grammar
t :: 't_' ::= {{ com term }}

| x :: :: Var {{ com variable}}
| \ x . t :: :: Lam (+ bind x in t +) {{ com lambda }}
| t t' :: :: App {{ com app }}
| (t) :: S:: Paren {{ icho [[t]] }}
| { t / x } t' :: M:: Tsub

{{ icho (tsubst_t [[t]] [[x]] [[t']])}}

Example

Some more declarations, then . . .

Example

-------------------------- :: ax_app
(\x.t12) v2 --> {v2/x}t12

t1 --> t1'
-------------- :: ctx_app_fun
t1 t --> t1' t

t1 --> t1'
-------------- :: ctx_app_arg
v t1 --> v t1'

OCaml light (major use of Ott)

I See http://www.cl.cam.ac.uk/~so294/ocaml/
I 67 pages of typeset defns for the core language (no modules,

no objects etc)

http://www.cl.cam.ac.uk/~so294/ocaml/

Why not use a theorem prover?

I TP-specific definitions - no reuse across TPs
I Usually heavier syntax in a TP
I TPs are slow; Ott is lightweight and quick to execute and

performs various forms of syntax and type-checking - perfect
for e.g. writing a paper (cf. Isabelle, where big developments
can take hours to process)

Ott: current status

I According to google scholar, 91+88 citations
I I don’t know for sure, but I expect that it is currently used by

maybe 10 or so researchers (but is this “good” or “bad”?)
I I think they are mostly fairly happy with it
I e.g. Harley Eades 2014 thesis “The semantic analysis of

advanced programming languages”: every language in the
thesis formalized with Ott; “Ott is a great example of a tool
using the very theory we are presenting in this thesis”

I “In addition, the full Ott specification of every type theory
defined with in this thesis can be found in the appendix”

I This is great. I really want CS and Maths to be presented using
formal definitions, even if the proofs are informal

Possible alternative to Ott

I A lot of Ott is parsing/pretty-printing, but there is a whole lot
of other stuff in there as well (eg type checking)

I Thought: good parsing/pretty-printing technology could get a
long way towards Ott feature set, with little of the cost

I Write definitions
I Use parser/printer to output to some other system (e.g. OCaml

or Isabelle)
I Use type checking of the other system

A sideline: parsing

Parsing

I During Netsem, I had the opportunity to use Lex and Yacc
I I wanted something else: a general parser, using combinators,

that was fast and easy to use, and based on a “good”
theoretical foundation

I The problem with naive combinator parsers
I “left recursion” , e.g. A -> A B
I “epsilon productions”, i.e. A -> ""

Verified combinator parsing

I c.2010-2011
I Combinator parsing for all CFGs
I Sound and complete
I Verified in HOL4
I Introduced some new concepts (“good” parse trees)
I As a by-product, provided a proof of correctness for a line of

work by Frost et al.
I But unusably slow in certain situations

More parsing

I I wanted something that was “fast”, and even more flexible
(more flexible than arbitrary CFGs? yes)

I This “verified parsing” work was useful because it forced me to
learn about algorithms and complexity

I More recent approach “Simple, efficient, sound and complete
combinator parsing for all context-free grammars, using an
oracle.” (Ridge, SLE 2014)

I Use combinators for the interface, but use Earley to do the
actual parsing

I Introduced the idea of representing parse information using an
oracle, not a “shared, packed, parse forest”

I The parsing work continues; essentially I have extended the
combinator/Earley approach to treat infinite CFGs, and
mildly-context-sensitive grammars (e.g. to parse
indentation-sensitive languages like Markdown); unpublished

Lem

Lem, 2011-c. today

I “Lem is a lightweight tool for writing, managing, and
publishing large scale semantic definitions.”

I cf. Ott, Lem is not specialized to PL defns: “Lem is a
general-purpose specification language, whereas Ott is a
domain-specific language for writing specifications of
programming languages (i.e., inductive relations over syntax).”

I Again, write definitions etc in a .lem file and export to Isabelle,
HOL4, Coq, OCaml, tex

I Netsem definitions ported to Lem from original HOL4
I using some fancy parsing machinery that I was working on to

parse the defns from HOL4 and pretty-print them to Lem
I amusingly, the stricter Lem syntax caught a bug in the spec

I Lots of other large case studies use Lem e.g. weak memory
models, CakeML etc etc

I Disclaimer: I am a user not a developer

Lem example

val is_root_dir : forall 'dir_ref 'file_ref 'impl.
fs_ops 'dir_ref 'file_ref 'impl ->
'impl ->
'dir_ref ->
bool

let is_root_dir ops s0 d0_ref = (
let root = (

match ops.fops_get_root s0 with
| Nothing -> (failwith "is_root_dir: impossible: no root") (* coverage:impossible*)
| Just x -> x end)

in
ops.fops_dir_ref_eq s0 root d0_ref)

I Syntax OCaml-like; minor differences in syntax (val,
match...end); explicit type quantification; additional support
for writing theorem statements, executable tests etc.

Lem status

I The main developers have moved on, so not much activity
I The users seem to be happy enough
I The code is staggeringly complicated (eg Lem knows about

how to compile pattern matches for each target back-end; so
Lem knows about all the differences in pattern matching syntax
between Isabelle/HOL and HOL4, and how to compile deeply
nested patterns to shallower patterns etc)

I Some of the features seem to be a bit fragile (probably due to
the complexity of what they tried to achieve)

I Thought: as with Ott, you could get a fair way towards Lem
functionality with decent parsing/pretty-printing tools
(although Lem is obviously much more sophisticated)

I We used Lem for SibylFS

Outline of talk

I Early work
I Netsem
I POPLmark
I Ott and Lem
I SibylFS
I Current/future work

What is SibylFS?

SibylFS is simultaneously
I A file system specification
I A test oracle that can be used to check real-world traces of file

system behaviour

Existing specifications

I Everyone knows specifications are important; how else do you
know what something is supposed to do? So, where are these
specifications?

I For file systems:
I POSIX online spec eg

http://pubs.opengroup.org/onlinepubs/9699919799/
I other informal specifications (Linux Standard Base, libc, muslc

etc)
I man pages (Linux, Mac, FreeBSD. . . all subtly different, even

between distributions of same OS)
I implementations (presumably you can read the source code and

discover “the truth” for a particular impl)
I test suites (for a small number of test cases eg 50 for rename in

POSIX test suite)

http://pubs.opengroup.org/onlinepubs/9699919799/

Problems with existing specifications

I Problems:
I lots of specifications - which is “right”?
I specs are mostly informal, and so (almost inevitably)

ambiguous, incomplete, plain wrong
I kernel code is formal, but unreadable unless you are a kernel

coder, and impractical as a spec
I (perhaps most important) Does an implementation actually

meet the specification? Unfortunately not possible to use
existing specs to test an implementation directly

Problem: implementations and specifications

I Do file system implementations meet the specifications? NO
(none of them as far as we can tell!)

I for “typical” use cases, they mostly behave sensibly; in edge
cases things go wrong

I => the specifications are not much use in these edge cases

Another problem: how do implementations differ?

I In edge cases, we know file systems behave quite differently
I The question now is: how do they behave differently? Some

individuals (e.g. file system developers) may know some of the
truth (e.g. about their file system); no-one knows the full truth.

What have we done?

I A formal specification of filesystem behaviour (with variants
for POSIX, Linux, Mac, FreeBSD)

I precise, unambiguous, readable, maintainable, comphrehensive,
detailed

I A test oracle (based directly on the spec) that can determine
whether any observed trace of a real-world system conforms to
the spec

I The test oracle enables exhaustive testing. We also provide an
extensive test suite of >20k scripts, and the results of running
those tests on >40 different combinations of
libc+OS+filesystem

I 20k test cases (and acceptable results) probably infeasible with
hand-written test cases

I impossible to compare results at this scale (800k traces)
without an oracle

System structure

I Test scripts mostly generated automatically, with additional
hand-written scripts

I Test scripts are fed to a test executor which executes the
scripts on a real-world libc+OS+filesystem stack

I Results are recorded as traces
I Traces are checked by SibylFS (the spec) to determine whether

they represent allowable behaviour or not; the output is in the
form of a checked trace

Example test script
A test script is essentially a list of libc calls to execute on a
real-world system

@type script
#####################################
Test link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4
#####################################
mkdir "empty_dir1" 0o777
mkdir "empty_dir2" 0o777
mkdir "nonempty_dir1" 0o777
mkdir "nonempty_dir1/d2" 0o777
open "nonempty_dir1/d2/f3.txt" [O_CREAT;O_WRONLY] 0o666
write! (FD 3) "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor inc" 83
close (FD 3)
... // further setup commands
link "nonempty_dir1/d2/sl_dotdot_d2" "nonempty_dir1/nonexist_4"
...

Example trace (behaviour of real-world system)
A trace records the libc calls from the test script, and the responses
received from the real-world system

processing file 'link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4-int.trace' ...
@type trace
#####################################
Test link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4
#####################################

5: mkdir "empty_dir1" 0o777
Tau
RV_none

6: mkdir "empty_dir2" 0o777
Tau
RV_none

7: mkdir "nonempty_dir1" 0o777
Tau
RV_none

8: mkdir "nonempty_dir1/d2" 0o777
Tau
RV_none

9: open "nonempty_dir1/d2/f3.txt" [O_CREAT;O_WRONLY] 0o666
Tau
RV_num(3)

10: write! (FD 3) "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor inc" 83
Tau
RV_num(83)

...

28: link "nonempty_dir1/d2/sl_dotdot_d2" "nonempty_dir1/nonexist_4"
Tau
RV_none

...

Example checked trace

I See e.g. here (local) or here (online)

link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4-int.trace.html
http://fs.dsheets.name/2015-03-15_linux_ext+hfsplus+tmpfs/html/suite/link/test/link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4-int.trace/index.html

The SibylFS specification

I A specification of the behaviour of libc+OS+filesystem, i.e.,
the behaviour a user process (application) sees when linked to
libc

I Written in Lem; available in HOL4, Isabelle/HOL and OCaml;
about 6k lines of Lem/HOL for the specification

I Variants for POSIX, Linux, Mac and FreeBSD
I For POSIX, a spec of allowable behaviours; for Linux Mac and

FreeBSD, a spec of existing real-world behaviours (with some
looseness); the parts of the spec that are Linux/Mac/FreeBSD
weird behaviours are clearly identifiable

Main differences to Netsem

I Effort to construct the spec: 3 person years vs 10+ years
I Spec clearly structured, modular, elegant (as far as possible);

this makes it much easier to update the spec and debug it
I The oracle used to check traces is 6 orders of magnitude (!)

faster than the Netsem oracle. Mainly this is due to the way
the spec was written, which enabled direct extraction of a test
oracle to OCaml

Labelled transition systems again

I For Netsem, we had a specification detailing transitions
s l→ s ′

I Here s is the state of a network, including the state of the
hosts.

I For file systems, it doesn’t make sense to do this.

SibylFS trace checking

I We must specify the interface to file systems, not the internal
state.

I We still use an LTS, but now the states are “abstract”, with no
direct relation to real-world file system states (and we don’t
want to specify what the relation is! there are too many
real-world file system implementations).

I All that matters is the sequence of labels that the spec gives
rise to

SibylFS trace checking

Given a sequence of observed events (labels). . .

l1 l2 l3...

. . . find a trace

s0
l1→ s1

l2→ s2 . . .

Form of the transition system: a step function

Netsem specified transitions in the form

P(s, l , s ′) −→ (s l→ s ′)

where P is not executable. For SibylFS, we specify a function step
such that

step(s, l) = {s ′|P(s, l , s ′)}

And this step function is computable.

Specification states are abstract, symbolic, with constraints

I They can be manipulated directly in OCaml

The oracle

I The oracle processes the labels one by one, keeping track of an
infinite set of possible real-world states

I Given a sequence of observed events (labels) l1l2l3... we
compute S0

l1→ S1
l2→ S2 . . .

I The Si are sets of possible spec states. There are a finite
number of spec states at each stage. Each spec state
corresponds to possibly infinite real-world states.

I Pros: very fast trace checking
I Cons: spec arguably less natural; custom-built ad hoc symbolic

expressions/ constraint languages (in Lem/HOL, and hence
OCaml)

The main challenges when writing the spec

I Interpreting POSIX
I Writing the spec so that it can be used to efficiently check

real-world traces of behaviour (the problem is nondeterminism
and state space explosion)

I Dealing with the complexity of observed real-world behaviour

The spec

An html version is here
See e.g. fsop_rename_checks_rsrc_rdst

spec.html

Testing

Testing

I The spec is reasonably large as a specification (c. 6000+ lines);
how can we gain confidence that it is correct?

I From the beginning we wanted to extensively validate the spec,
by using it to check traces of real-world behaviour

I This form of testing also uncovers bugs in real-world systems

Test oracle enables combinatorial testing

I Existing filesystem test suites hardcode the expected answers
for a given libc call; practically, they tend to have a relatively
small number of tests

I Our approach is different: a test script is just a sequence of
libc calls (we don’t need to say what should happen after each
call - the spec already contains this knowledge)

I This enables randomized and combinatorial testing
I We try to exhaustively combinatorially test the libc interface

using tests that are generated automatically
I Much more usable and much less effort than hand-coding test

cases (hand-coding is infeasible at this scale)

Difficulty of LTS trace checking

I NetSem gave a specification of UDP and TCP/IP as an LTS
which was then used as a test oracle; our approach is broadly
based on the NetSem approach

I NetSem took 2500 CPU-hours to check 1000 traces; this is at
the limit of practicality; the cost of checking made it very
difficult to update and revise the spec

I Checking a trace against an LTS is a very general problem
which I think deserves a bit more attention

I The SibylFS spec was designed from the start for efficient trace
checking: checking >20k tests on a 4-core i7 takes about 79s
(it takes 152s to execute the tests on an in-memory tmpfs
filesystem)

I Our testing involves a very large number of test scripts;
checking is extremely fast; indeed SibylFS is fast enough that it
could be used to check behaviour “online”

Test results

We found the following sorts of bugs
I Errors (and ambiguities etc) in the specifications (including

POSIX, man pages etc)
I Errors and deviations in implementations
I Errors in our spec (which we then fixed of course!) and tracing

infrastructure

Test results, stats

I Trace acceptance
I Linux: 21061 accepted by spec; 9 rejected (21070 total)
I Mac: 21036 accepted by spec, 34 rejected (21070 total);

FreeBSD similar
I essentially no barrier to getting 100% trace acceptance

I Coverage: >98% (of the spec)
I by way of comparison, a paper (Groce et al., 2007,
“Randomized differential testing. . . ”) from NASA scientists that
applied randomized testing to a model of a filesystem achieved
89% coverage

Test results, strange behaviours

I Error codes are quite often non-POSIX
I Path resolution, particularly when a trailing slash is involved, is

variable, non-POSIX
I Treatment of paths referencing symlinks, particularly when the

path ends in a trailing slash, is highly variable
I Various overlay filesystems, and FUSE filesystems, mess up

things like permissions

Test results, strange behaviours
I More serious: posixovl/VFAT (posix emulation on top of VFAT)

gets link count wrong when rename overwrites a file that is
linked elsewhere; possible to get to a state where the filesystem
contains no files, but there is no free space (space leak)

I OpenZFS on Linux 3.13.0-34 (Ubuntu Trusty): files opened
with O_APPEND would not seek to the end of the file before
write or pwrite (probably causing applications that use this
functionality to fail)

I OpenZFS on OS/X: possible to execute a sequence of calls
which leads to the calling process hanging using 100% CPU,
unresponsive to signals; volume cannot be unmounted, machine
cannot be shut down; force unmounting may cause storage
device to become unusable until next system restart

I Permissions: implementations of permissions should give the
same behaviour from one kernel version to the next; however,
we found tests involving file and directory access that failed on
Linux kernel 3.13 and succeeded on 3.14; pronbably a buggy
3.13 implementation of permissions in edge cases

A FreeBSD bug

I An important invariant
I if there is an error when executing a file system function, then

the state of the file system is unchanged
I => e.g. so if I try to create a file using open and I get an error,

I don’t have to clear up after myself
I this invariant appears to hold for POSIX, Linux and Mac

I https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=202892
(2015-09-04!)

I opening a file: symlink deleted, file created, error returned
I => here, this invariant is broken on FreeBSD

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=202892

An FSCQ bug

https://github.com/mit-pdos/fscq-impl/issues/2

https://github.com/mit-pdos/fscq-impl/issues/2

Testing summary

I Huge number of tests, mostly automatically generated; tested
on a large number of stacks

I SibylFS is very efficient at checking tests
I Excellent trace acceptance and coverage figures
I In edge cases there are numerous differences between POSIX,

Linux, Mac and FreeBSD; most are not very interesting, but
the spec gives a complete description of them; the testing even
uncovered some relatively serious bugs (which we didn’t
expect) and (please don’t repeat this) a serious bug in a
verified file system

I The real result of testing is that we have confidence in the spec

A virtuous circle

I Is our spec/ testing perfect?
I Almost certainly not, but in many ways it improves on the

status quo
I And there is a virtuous circle

Thoughts on specification and validation of large
real-world systems

I I feel I am almost at the point where I know how to do this
(SibylFS is not quite right)

I The problems are mainly software engineering (modularity,
separation of concerns), and ensuring the spec is efficiently
checkable (which mainly requires deciding how to handle all
the forms of nondet)

I Clean slate spec and validation could be much simpler (e.g.,
one could determinise many cases to reduce nondeterminism
and make checking easier)

What next?

My work is mainly on:
I Verified file system implementation (based on novel proofs

about B-trees)
I Parsing

Verified file system

We are currently working on a verified file system
implementation. Compared to existing file systems, we hope for:

I better performance
I more features and functionality
I verified correctness

We note that
I B-trees are a key datastructure; existing proofs are not suitable

for formalization (especially with concurrency); we have
developed new proofs of correctness and are in the process of
formalizing these

Parsing

I I want a parsing tool that can replace latex, Ott and Lem
I That is very simple, but fast
I That can parse “infinite” grammars, and

mildly-context-sensitive grammars e.g. markdown
I That has a re-targettable front-end (so you can use any

formalism you like to specify your parsers - cf. grammar zoo,
IETF BNF spec RFC7405 etc)

I Currently I am thinking about associativity and precedence and
ways to combine them with combinator/Earley parsing

Overall aim

I Better theorem provers and related tools
I Portable definitions and proofs so we don’t have to keep

reinventing the wheel; portable verified implementations
I Simplicity, beauty and elegance

Current working style

I I have started to use Scala because of the libraries and tools; I
tend to prototype and test code in Scala, and later port to
Isabelle

I I try to capture as much proof structure in Scala as possible
e.g. not only the code, but any abstractions, invariants etc

I For testing, I try to test all invariants etc that I can; this is
extremely useful for catching bugs.

I I am thinking of writing a lightweight proving tool in Scala
which uses off-the-shelf rewriting tools and first-order-provers
(with my parsing technology as the front-end)

I “Modularity matters most”; “separation of concerns”

THE END. Thank you for listening

	Netsem
	Ott
	A sideline: parsing
	Lem
	SibylFS
	Testing
	Thoughts on specification and validation
	What next?

