Netsem, Ott, Lem, SibylFS and Verified Parsing:
Specification and Validation at Scale

Dr Tom Ridge

2016-04-20

Topics

Talk will include

» Description of the projects in the title, and some interesting
aspects of each

» General comments about specification, validation and proof for
real-world systems

» Because | know some people are also interested in formalized
proof systems, | will talk a bit about work | did in this area
(mostly unpublished)

Outline of talk

Roughly, | will present things in chronological order

> Early work

» Netsem (a large, formal specification of UDP, TCP/IP and
ICMP)

POPLmark (can theorem provers handle large formalizations?)
Ott and Lem (tools for large formalizations)

SibylFS (a large, formal specification of file systems)

vV v v Y

Current/future work

Early stuff

» There are some theories in the Archive of Formal Proofs e.g. a
version of Ramsey's theorem (read Boolos and Jeffrey C+L!)
» Soundness and completeness for FOL (with Margetson - he did
most of the work), with an executable (within Isabelle, or via
extracted code), complete proof search for FOL
» This is based on Wainer and Wallen BPT

» N.B. for FOL proof search, resolution is probably “better” than
tableaux (?)

» Formalized proof theory e.g. Craig's interpolation theorem
(unpublished)

» Based on Girard PT+LC
» PhD: applied formal methods

c. 2005

» Motivation: | really want to improve the systems we currently
use

» Observation: formalization (4+ mechanization) is an extremely
effective way of developing correct software (really, the only
way)

» Observation: automation is important, but for non-trivial
systems you need interactive proof

» Observation: (as any fule kno) F+M takes a long time

Why does it take so long?

» Lots of details; “obvious"” results can be painful to get the
machine to understand

v

Logics are inflexible in various ways

Tools are immature

Formalized libraries are quite small still; often they involve
shortcuts which limit their reuse

v

v

Proofs

» Existing “proofs"” are not proofs at all (at best, optimistic; some
notable exceptions)

» Existing proofs are unsuitable for mechanization (even if they
are roughly correct)

» So, you effectively have to come up with your own proofs, and
this takes time; it also requires formalizers to be fairly bright,
and so the talent pool is fairly small, which matters

v

» Community obsessed with formalizing everything (without
assumptions), which makes progress very slow

» Why not have a formal repository of defns and theorem
statements? Because we haven't got the right logics/formalisms

So what next?

> Apply F+M to real-world systems; ideally produce systems that
are better than existing systems (features, performance,...),
and proved correct

Try to solve the engineering problems (reduce the effort)

Try to see what the other problems are

Take a long-term view

vV v v Yy

Focus on the components and interfaces that are most
“valuable”

Outline of talk

Early work

Netsem

POPLmark

Ott and Lem
SibylFS
Current/future work

vV vy V. V. VY

First big project: Netsem

» 2001-c.2009 (some work still ongoing), Peter Sewell et al.,
http://www.cl.cam.ac.uk/~pes20/Netsem/

» “apply formal methods to the network stack”
» develop a spec of UDP+TCP/IP+ICMP

> test spec against real-world implementations - to validate spec,
and discover bugs in implementations

http://www.cl.cam.ac.uk/~pes20/Netsem/

Netsem TCP/IP specification

» Concurrency, distribution clearly important areas of computer
science, particularly with the arrival of the internet

» Academia: pi calculus etc; my uninformed view: very useful,
but no real attempt to address e.g. host and network failure

» Real-world network programming uses TCP/IP, and has to take
these issues seriously; particularly timers, timeouts etc

Netsem TCP/IP specification, artefacts

Test infrastructure

Test suite

Specification | Traces of system

behaviour

Test oracle

Do the traces match the
spec?

Netsem workflow

Run tests on test bed, record
results as traces

Refine spec/ testing
infrastructure or identify
TCP/IP implementation bug.
Maybe add new tests.

L Examine failing traces to see

what the problem is

Feed traces to oracle

Netsem TCP/IP specification

» Written in HOL (HOL4), with various specification “idioms”
(“relational monad™)

> Relatively close correspondence to BSD implementation code
(probably a mistake)

» Extensively documented

» Available at http://www.cl.cam.ac.uk/~pes20/Netsem/ and
now on GitHub https://github.com/PeterSewell /netsem

http://www.cl.cam.ac.uk/~pes20/Netsem/
https://github.com/PeterSewell/netsem

Spec excerpt

[
recv-1 tcp: fast succeed Successfully return data from the socket without blocking

h(t ts ® (tid — (RUN),);
socks := socks ©
[(sid, SOCK(T fid, sf, is1, psy. is2, pss, €s, cantsndmore, cantrcvmore,
TCP_Sock(st, cb, *, sndq, sndurp, rcvq, revurp, iobe)))]))
tid-recv(fd, ng, optsy)
—_

h (ts:=ts @ (tid — (RET(OK(implode str,x)))

s0c, 2]

[(sid, SOCK(T fid, sf, is1, psy. is2, ps,, €s, cantsndmore, cantrcvmore,
TCP_Sock(st, cb, *, sndgq, sndurp, rcvg”, revurp’, iobe)))])

sched_timer)

((st € {ESTABLISHED; FIN_-WAIT_1; FIN_.WAIT_2; CLOSING;
TIME_WAIT; CLOSE_WAIT; LAST_ACK} A

This describes a host transition. This is lifted to the “network” level
to give transitions of a network of machines.

Test infrastructure and oracle

» Written in SML, OCaml, C, and HOL (with perl, bash etc)

» Infrastructure to run distributed test cases (multiple hosts
communicating over network) and record (distributed) traces.
Logging of events on wire, in TCP/IP stack and at sockets API
on every host, and merged to form a single global trace

» Oracle, to check traces against the spec

Formal foundation: labelled transition systems

» (S,L,S0, T) where S CS; TCSxL xS

> Notation: s -5 s’ means (s,1,s") e T

» T defined by clauses of the form: P(s,/,s") — (s A s')
» A trace is sp i> st ’4 Sp.... The spec tells you which of

these are “"OK" and which not.

Each state s € S describes a network of machines, and the
TCP/IP, UDP and ICMP packets on the wires

Observation: LTS/small-step operational semantics is a very
basic and general formalism; it is usually my go-to formalism

v

v

Example trace

https://github.com/PeterSewell /netsem /blob/master/
demo-traces/tracel7414#187-1112
Or here

https://github.com/PeterSewell/netsem/blob/master/demo-traces/trace1741#L87-L112
https://github.com/PeterSewell/netsem/blob/master/demo-traces/trace1741#L87-L112
example_trace.html

Problem (partial states and labels, partial traces)
A trace is s i) s1 /A ...

» The event logging infrastructure observed partial details of the
states s;
» And partial details of the labels/events /;
» And some events were not observable (internal kernel
transitions, 7 events)
So the checker was given information like:
S0 LN s1(partial) 55 (i>)7 S? (—?>)? Si...
And had to figure out the complete trace as above.

» When searching for such a trace, the nondeterminism is huge
» The test oracle was implemented in SML, using the symbolic
execution engine of HOL4, and the HOL4 specification (so

guaranteed sound, but slow)

Result: checking traces was very very slow e.g. 2500 hours to check
1000 traces

Possible solution: logging infrastructure should record
everything

1 sy s1(partial) 55 (l>)? s (;)? Si...

/ /
2. S0 —1> 51 4 So...

We don't want (1), we do want (2). This is maybe possible with
current kernel tracing technology, but likely that parts of the s; are
still partial/ symbolic.

Problem: spec not suitable for checking traces

» Suppose we have s s ' where we have full information
about s, /, s’

» The specification is given in the form P(s,/,s') — (s N ')

» This is a specification. There is no guarantee that it is
possible to compute whether P(s, /,s’) is satisfied or not.

» For Netsem, we wrote transformations to transform the spec
into a form that could be executably checked, but this was ad
hoc and painful.

Other problems

» Spec large and unwieldy (partly because it stuck closely to
BSD code structure)

» Hard to debug spec (partly because it stuck closely to BSD
code structure, partly because of a lack of tools, partly because
things took so long)

Netsem was painful; | don't want to do that again

Outline of talk

Early work

Netsem

POPLmark

Ott and Lem
SibylFS
Current/future work

vV vy V. V. VY

Detour: Mechanized Metatheory for the Masses: The
POPLmark Challenge

» Sewell et al., 2005, “Mechanized Metatheory for the Masses:
The POPLmark Challenge”

> Are theorem provers up to the task of mechanizing PL
research? (Really: are TPs up to the task of mechanizing
certain areas of CS research which involve intricate
syntax-heavy proofs)

» Case study: System F-sub

» Quite a few solutions submitted (about 10)

» Current status

> Pierce et al., 2008, “It Is Time to Mechanize Programming
Language Metatheory”

» 2015: Most (?) POPL papers are accompanied by mechanized
artefacts

Unpublished work

v

| did the POPLmark challenge in HOL4, using a named
representation and explicit alpha variance in lemma statements
when needed

| focused on making the proofs human readable, and my feeling
is that they are very nice proofs

Overall the attempt was almost successful, but there was one
point where the proof really needed equality of alpha-equivalent
terms, and stating the lemmas using explicit alpha was just too
painful.

An alternative would be to induct on “sizes” of terms and
derivations, but of course this makes the proofs slightly less
nice.

Thoughts

v

v

All the major theorem provers can handle this sort of case study
For me, De Bruijn is clearly the most successful representation
» Reuse is potentially a problem because the same lemmas have

to be proved for each new datatype-with-binding; machinery
helps here, or moving to a more general setting (e.g. set theory)

With the exception of De Bruijn representations, binding is
problematic because of the desire for equality of
alpha-equivalent terms

» And theorem provers such as HOL4 are very bad at quotient
types (is Coq better here? probably not)

So maybe use De Bruijn; if De Bruijn is not suitable (e.g. lots
of datatypes-with-binding), one might consider Pitts-style
nominal approaches via Nominal Isabelle (because the
machinery proves a lot of lemmas for you)

Also around this time, some more unpublished work

» Type soundness for various systems

» Some attempts at formalizing cut elimination, Craig’s
interpolation theorem etc

» Many attempts at formalizing various approaches to binding

» Some comments in a minor workshop “Workshop on
Mechanizing Metatheory”
http://www.tom-ridge.com/resources/doc/ridge07wmm.pdf

http://www.tom-ridge.com/resources/doc/ridge07wmm.pdf

Outline of talk

Early work

Netsem

POPLmark

Ott and Lem
SibylFS
Current/future work

vV vy V. V. VY

What is Ott?

» Ott, c. 2006-7 http://www.cl.cam.ac.uk/~pes20/ott/
» “Ott is a tool for writing definitions of programming languages
and calculi”

» Write a definition in a .ott file, and get output in tex, Isabelle,
Coq, HOL4
» Disclaimer: | was a user, not a developer

http://www.cl.cam.ac.uk/~pes20/ott/

Example

metavar termvar, x ::= {{ com term variable }}

{{ isa string}} {{ coq nat}} {{ hol string}} {{ cog-equali-
{{ ocaml int}} {{ lex alphanum}} {{ tex \mathit{[[termvar].

grammar
t o 't ' o= {{ com term
| x :: Var {{ com varial
I \'x . t :: :: Lam (+ bind x in t +) {{ com lambd:
|l t ¢! :: i App {{ com app
[Ct) :: S:: Paren {{ icho [[t].
|l {t/x 3}t :: M:: Tsub

{{ icho (tsubst_t [[t]1] [[x]1] [[t'.

Example

Some more declarations, then ...

Example

—————————————————————————— :: ax_app
(\x.t12) v2 -—> {v2/x}t12

tl -—> t1'

—————————————— :: ctx_app_fun
tl t ——> tl' t

tl -—> t1'

-——--—-------- :: ctx_app_arg

v tl -——> v t1'

OCaml light (major use of Ott)

» See http://www.cl.cam.ac.uk/~s0294 /ocaml/

» 67 pages of typeset defns for the core language (no modules,
no objects etc)

http://www.cl.cam.ac.uk/~so294/ocaml/

Why not use a theorem prover?

» TP-specific definitions - no reuse across TPs

» Usually heavier syntax in a TP

» TPs are slow; Ott is lightweight and quick to execute and
performs various forms of syntax and type-checking - perfect
for e.g. writing a paper (cf. Isabelle, where big developments
can take hours to process)

Ott: current status

» According to google scholar, 91488 citations
» | don't know for sure, but | expect that it is currently used by
maybe 10 or so researchers (but is this “good” or “bad"?)
> | think they are mostly fairly happy with it
» e.g. Harley Eades 2014 thesis “The semantic analysis of
advanced programming languages”: every language in the
thesis formalized with Ott; “Ott is a great example of a tool
using the very theory we are presenting in this thesis”
» “In addition, the full Ott specification of every type theory
defined with in this thesis can be found in the appendix”

» This is great. | really want CS and Maths to be presented using
formal definitions, even if the proofs are informal

Possible alternative to Ott

» A lot of Ott is parsing/pretty-printing, but there is a whole lot
of other stuff in there as well (eg type checking)

» Thought: good parsing/pretty-printing technology could get a
long way towards Ott feature set, with little of the cost

» Write definitions

» Use parser/printer to output to some other system (e.g. OCaml
or Isabelle)

» Use type checking of the other system

A sideline: parsing

Parsing

» During Netsem, | had the opportunity to use Lex and Yacc

» | wanted something else: a general parser, using combinators,
that was fast and easy to use, and based on a “good”
theoretical foundation

» The problem with naive combinator parsers

> “left recursion” , eg. A -> A B
» “epsilon productions”, i.e. A => ""

Verified combinator parsing

c.2010-2011

Combinator parsing for all CFGs

Sound and complete

Verified in HOL4

Introduced some new concepts (“good” parse trees)

As a by-product, provided a proof of correctness for a line of
work by Frost et al.

But unusably slow in certain situations

vV vV V. V. VY

v

More parsing

> | wanted something that was “fast”, and even more flexible
(more flexible than arbitrary CFGs? yes)

» This “verified parsing” work was useful because it forced me to
learn about algorithms and complexity

» More recent approach “Simple, efficient, sound and complete
combinator parsing for all context-free grammars, using an
oracle” (Ridge, SLE 2014)

» Use combinators for the interface, but use Earley to do the
actual parsing

» Introduced the idea of representing parse information using an
oracle, not a “shared, packed, parse forest”

» The parsing work continues; essentially | have extended the
combinator/Earley approach to treat infinite CFGs, and
mildly-context-sensitive grammars (e.g. to parse
indentation-sensitive languages like Markdown); unpublished

Lem

Lem, 2011-c. today

» “Lem is a lightweight tool for writing, managing, and
publishing large scale semantic definitions.”

» cf. Ott, Lem is not specialized to PL defns: “Lem is a
general-purpose specification language, whereas Ott is a
domain-specific language for writing specifications of
programming languages (i.e., inductive relations over syntax)

» Again, write definitions etc in a .1lem file and export to Isabelle,
HOL4, Coq, OCaml, tex

» Netsem definitions ported to Lem from original HOL4

» using some fancy parsing machinery that | was working on to
parse the defns from HOL4 and pretty-print them to Lem
» amusingly, the stricter Lem syntax caught a bug in the spec

» Lots of other large case studies use Lem e.g. weak memory
models, CakeML etc etc
» Disclaimer: | am a user not a developer

Lem example

val is_root_dir
fs_ops 'dir_ref 'file_ref 'impl ->

"impl ->
'dir_ref ->
bool

let is_root_dir ops sO dO_ref = (

let root = (
match ops.fops_get_root sO with

| Just x —> x end)
in
ops.fops_dir_ref_eq sO root dO_ref)

» Syntax OCaml-like; minor differences in syntax (val,
match. . .end); explicit type quantification; additional support

for writing theorem statements, executable tests etc.

: forall 'dir_ref 'file_ref 'impl.

| Nothing -> (failwith "is_root_dir: impossible: no

]

Lem status

» The main developers have moved on, so not much activity

» The users seem to be happy enough

» The code is staggeringly complicated (eg Lem knows about
how to compile pattern matches for each target back-end; so
Lem knows about all the differences in pattern matching syntax
between Isabelle/HOL and HOL4, and how to compile deeply
nested patterns to shallower patterns etc)

» Some of the features seem to be a bit fragile (probably due to
the complexity of what they tried to achieve)

» Thought: as with Ott, you could get a fair way towards Lem
functionality with decent parsing/pretty-printing tools
(although Lem is obviously much more sophisticated)

» We used Lem for SibylFS

Outline of talk

Early work

Netsem

POPLmark

Ott and Lem
SibylFS
Current/future work

vV vy V. V. VY

What is SibylFS?

SibylFS is simultaneously

> A file system specification
» A test oracle that can be used to check real-world traces of file
system behaviour

Existing specifications

» Everyone knows specifications are important; how else do you
know what something is supposed to do? So, where are these
specifications?

> For file systems:

>

POSIX online spec eg
http://pubs.opengroup.org/onlinepubs/9699919799/

other informal specifications (Linux Standard Base, libc, muslc
etc)

man pages (Linux, Mac, FreeBSD. .. all subtly different, even
between distributions of same OS)

implementations (presumably you can read the source code and
discover “the truth” for a particular impl)

test suites (for a small number of test cases eg 50 for rename in
POSIX test suite)

http://pubs.opengroup.org/onlinepubs/9699919799/

Problems with existing specifications

» Problems:

» lots of specifications - which is “right”?

» specs are mostly informal, and so (almost inevitably)
ambiguous, incomplete, plain wrong

> kernel code is formal, but unreadable unless you are a kernel
coder, and impractical as a spec

» (perhaps most important) Does an implementation actually
meet the specification? Unfortunately not possible to use
existing specs to test an implementation directly

Problem: implementations and specifications

» Do file system implementations meet the specifications? NO
(none of them as far as we can tell!)
» for “typical” use cases, they mostly behave sensibly; in edge
cases things go wrong
» => the specifications are not much use in these edge cases

Another problem: how do implementations differ?

> In edge cases, we know file systems behave quite differently

» The question now is: how do they behave differently? Some
individuals (e.g. file system developers) may know some of the
truth (e.g. about their file system); no-one knows the full truth.

What have we done?

» A formal specification of filesystem behaviour (with variants
for POSIX, Linux, Mac, FreeBSD)

> precise, unambiguous, readable, maintainable, comphrehensive,
detailed

> A test oracle (based directly on the spec) that can determine
whether any observed trace of a real-world system conforms to
the spec

» The test oracle enables exhaustive testing. We also provide an
extensive test suite of >20k scripts, and the results of running
those tests on >40 different combinations of
libc+0OS+filesystem

» 20k test cases (and acceptable results) probably infeasible with
hand-written test cases

» impossible to compare results at this scale (800k traces)
without an oracle

System structure

Test generato’r/@ Handwritten test scripts

Test scripts % 5 Traces
SibylFS

» Test scripts mostly generated automatically, with additional
hand-written scripts

Checked traces

» Test scripts are fed to a test executor which executes the
scripts on a real-world libc+OS+filesystem stack

» Results are recorded as traces

» Traces are checked by SibylFS (the spec) to determine whether
they represent allowable behaviour or not; the output is in the
form of a checked trace

Example test script

A test script is essentially a list of libc calls to execute on a
real-world system

@type script

HEHHAH R A H AR R

Test link___link_nonempty_dirl__d2__sl_dotdot_d2___noner
T

mkdir "empty_dirl" 00777

mkdir "empty_dir2" 00777

mkdir "nonempty_dirl" 00777

mkdir "nonempty_dirl/d2" 00777

open "nonempty_dir1/d2/f3.txt" [0_CREAT;0_WRONLY] 00666
write! (FD 3) "Lorem ipsum dolor sit amet, consectetur ad:
close (FD 3)

... // further setup commands

link "nonempty_dirl/d2/sl_dotdot_d2" "nonempty_dirl/nonex:

Example trace (behaviour of real-world system)

A trace records the libc calls from the test script, and the responses
received from the real-world system

processing file 'link___link_nonempty_dirl__d2__sl_dotd«

Otype trace
EE s e e e e
Test link___link_nonempty_dirl__d2__sl_dotdot_d2
B s e e e e

5: mkdir "empty_dirl" 00777
Tau
RV_none

6: mkdir "empty_dir2" 00777
Tau
RV_none

7: mkdir "nonempty_dirl" 00777
Tau
RV_none

8: mkdir "nonempty_dir1/d2" 00777
Ta11

Example checked trace

> See e.g. here (local) or here (online)

link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4-int.trace.html
http://fs.dsheets.name/2015-03-15_linux_ext+hfsplus+tmpfs/html/suite/link/test/link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4-int.trace/index.html

The SibylFS specification

» A specification of the behaviour of libc+OS+filesystem, i.e.,
the behaviour a user process (application) sees when linked to
libc

» Written in Lem; available in HOL4, Isabelle/HOL and OCaml;
about 6k lines of Lem/HOL for the specification

» Variants for POSIX, Linux, Mac and FreeBSD

» For POSIX, a spec of allowable behaviours; for Linux Mac and
FreeBSD, a spec of existing real-world behaviours (with some
looseness); the parts of the spec that are Linux/Mac/FreeBSD
weird behaviours are clearly identifiable

Main differences to Netsem

» Effort to construct the spec: 3 person years vs 10+ years

» Spec clearly structured, modular, elegant (as far as possible);
this makes it much easier to update the spec and debug it

» The oracle used to check traces is 6 orders of magnitude (!)
faster than the Netsem oracle. Mainly this is due to the way
the spec was written, which enabled direct extraction of a test
oracle to OCaml

Labelled transition systems again

» For Netsem, we had a specification detailing transitions

N,
s — S

» Here s is the state of a network, including the state of the
hosts.

» For file systems, it doesn’t make sense to do this.

SibylFS trace checking

» We must specify the interface to file systems, not the internal
state.

» We still use an LTS, but now the states are “abstract”, with no
direct relation to real-world file system states (and we don't
want to specify what the relation is! there are too many
real-world file system implementations).

> All that matters is the sequence of labels that the spec gives
rise to

SibylFS trace checking

Given a sequence of observed events (labels). ..

hhbk..

...find a trace

/ /
) —1> 51 é S ...

Form of the transition system: a step function

Netsem specified transitions in the form

P(s,1,s") — (s 5 &)

where P is not executable. For SibylFS, we specify a function step
such that

step(s, 1) = {s'|P(s,,s")}

And this step function is computable.

Specification states are abstract, symbolic, with constraints

» They can be manipulated directly in OCaml

The oracle

» The oracle processes the labels one by one, keeping track of an
infinite set of possible real-world states

» Given a sequence of observed events (labels) /1 k... we
compute Sy LN St LS S ...

» The S; are sets of possible spec states. There are a finite
number of spec states at each stage. Each spec state
corresponds to possibly infinite real-world states.

» Pros: very fast trace checking

» Cons: spec arguably less natural; custom-built ad hoc symbolic
expressions/ constraint languages (in Lem/HOL, and hence
OCaml)

The main challenges when writing the spec

> Interpreting POSIX

» Writing the spec so that it can be used to efficiently check
real-world traces of behaviour (the problem is nondeterminism
and state space explosion)

» Dealing with the complexity of observed real-world behaviour

The spec

An html version is here
See e.g. fsop_rename_checks_rsrc_rdst

spec.html

Testing

Testing

» The spec is reasonably large as a specification (c. 6000+ lines);
how can we gain confidence that it is correct?

> From the beginning we wanted to extensively validate the spec,
by using it to check traces of real-world behaviour

» This form of testing also uncovers bugs in real-world systems

Test oracle enables combinatorial testing

» Existing filesystem test suites hardcode the expected answers
for a given libc call; practically, they tend to have a relatively
small number of tests

» Qur approach is different: a test script is just a sequence of
libc calls (we don't need to say what should happen after each
call - the spec already contains this knowledge)

» This enables randomized and combinatorial testing

> We try to exhaustively combinatorially test the libc interface
using tests that are generated automatically

» Much more usable and much less effort than hand-coding test
cases (hand-coding is infeasible at this scale)

Difficulty of LTS trace checking

» NetSem gave a specification of UDP and TCP/IP as an LTS
which was then used as a test oracle; our approach is broadly
based on the NetSem approach

» NetSem took 2500 CPU-hours to check 1000 traces; this is at
the limit of practicality; the cost of checking made it very
difficult to update and revise the spec

» Checking a trace against an LTS is a very general problem
which | think deserves a bit more attention

» The SibylFS spec was designed from the start for efficient trace
checking: checking >20k tests on a 4-core i7 takes about 79s
(it takes 152s to execute the tests on an in-memory tmpfs
filesystem)

» Our testing involves a very large number of test scripts;
checking is extremely fast; indeed SibylFS is fast enough that it
could be used to check behaviour “online”

Test results

We found the following sorts of bugs

» Errors (and ambiguities etc) in the specifications (including
POSIX, man pages etc)

» Errors and deviations in implementations

» Errors in our spec (which we then fixed of course!) and tracing
infrastructure

Test results, stats

» Trace acceptance

» Linux: 21061 accepted by spec; 9 rejected (21070 total)

» Mac: 21036 accepted by spec, 34 rejected (21070 total);
FreeBSD similar

» essentially no barrier to getting 100% trace acceptance

» Coverage: >98% (of the spec)

» by way of comparison, a paper (Groce et al., 2007,
“Randomized differential testing..."”) from NASA scientists that
applied randomized testing to a model of a filesystem achieved
89% coverage

Test results, strange behaviours

» Error codes are quite often non-POSIX

» Path resolution, particularly when a trailing slash is involved, is
variable, non-POSIX

» Treatment of paths referencing symlinks, particularly when the
path ends in a trailing slash, is highly variable

» Various overlay filesystems, and FUSE filesystems, mess up
things like permissions

Test results, strange behaviours

>

More serious: posixovl/VFAT (posix emulation on top of VFAT)
gets link count wrong when rename overwrites a file that is
linked elsewhere; possible to get to a state where the filesystem
contains no files, but there is no free space (space leak)
OpenZFS on Linux 3.13.0-34 (Ubuntu Trusty): files opened
with 0_APPEND would not seek to the end of the file before
write or pwrite (probably causing applications that use this
functionality to fail)

OpenZFS on OS/X: possible to execute a sequence of calls
which leads to the calling process hanging using 100% CPU,
unresponsive to signals; volume cannot be unmounted, machine
cannot be shut down; force unmounting may cause storage
device to become unusable until next system restart
Permissions: implementations of permissions should give the
same behaviour from one kernel version to the next; however,
we found tests involving file and directory access that failed on
Linux kernel 3.13 and succeeded on 3.14; pronbably a buggy
3.13 implementation of permissions in edge cases

A FreeBSD bug

» An important invariant

» if there is an error when executing a file system function, then
the state of the file system is unchanged

» => e.g. so if | try to create a file using open and | get an error,
| don't have to clear up after myself

» this invariant appears to hold for POSIX, Linux and Mac

» https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=202892
(2015-09-04!)
» opening a file: symlink deleted, file created, error returned
» => here, this invariant is broken on FreeBSD

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=202892

An FSCQ bug

https://github.com/mit-pdos/fscq-impl /issues/2

.. dsheets commented on 3 Oct 2015

On an empty file system built from 27c4678 , running

#include <unistd.h>
#include <fcntl.h>

int main() {
close(creat ("spaaaaaace”)) ;

truncate("spaaaaaace”, 10) ;

return o;

3

results in a file, spaaaaaace , which contains the text spaaaaaace instead of 10 null bytes. For
applications which expect POSIX, OS X, Linux, or BSD behavior when using truncate to extend files, this
unexpected data can result in incorrectly formatted files.

u zeldovich commented on 3 Oct 2015 Owner

Thanks; | will take a look. Sounds like we might have gotten the spec wrong.

https://github.com/mit-pdos/fscq-impl/issues/2

Testing summary

» Huge number of tests, mostly automatically generated; tested
on a large number of stacks

» SibylFS is very efficient at checking tests
» Excellent trace acceptance and coverage figures

» In edge cases there are numerous differences between POSIX,
Linux, Mac and FreeBSD; most are not very interesting, but
the spec gives a complete description of them; the testing even
uncovered some relatively serious bugs (which we didn't
expect) and (please don't repeat this) a serious bug in a
verified file system

» The real result of testing is that we have confidence in the spec

A virtuous circle

» Is our spec/ testing perfect?

» Almost certainly not, but in many ways it improves on the
status quo

» And there is a virtuous circle

Thoughts on specification and validation of large
real-world systems

> | feel | am almost at the point where | know how to do this
(SibylFS is not quite right)

» The problems are mainly software engineering (modularity,
separation of concerns), and ensuring the spec is efficiently
checkable (which mainly requires deciding how to handle all
the forms of nondet)

» Clean slate spec and validation could be much simpler (e.g.,
one could determinise many cases to reduce nondeterminism
and make checking easier)

What next?

My work is mainly on:

» Verified file system implementation (based on novel proofs
about B-trees)
> Parsing

Verified file system

We are currently working on a verified file system
implementation. Compared to existing file systems, we hope for:

» better performance
» more features and functionality
» verified correctness

We note that

> B-trees are a key datastructure; existing proofs are not suitable
for formalization (especially with concurrency); we have
developed new proofs of correctness and are in the process of
formalizing these

Parsing

v

| want a parsing tool that can replace latex, Ott and Lem

» That is very simple, but fast

» That can parse “infinite” grammars, and
mildly-context-sensitive grammars e.g. markdown

» That has a re-targettable front-end (so you can use any
formalism you like to specify your parsers - cf. grammar zoo,
IETF BNF spec RFC7405 etc)

» Currently | am thinking about associativity and precedence and

ways to combine them with combinator/Earley parsing

Overall aim

» Better theorem provers and related tools

» Portable definitions and proofs so we don’t have to keep
reinventing the wheel; portable verified implementations

» Simplicity, beauty and elegance

Current working style

v

| have started to use Scala because of the libraries and tools; |

tend to prototype and test code in Scala, and later port to

Isabelle

> | try to capture as much proof structure in Scala as possible
e.g. not only the code, but any abstractions, invariants etc

» For testing, | try to test all invariants etc that | can; this is
extremely useful for catching bugs.

> | am thinking of writing a lightweight proving tool in Scala
which uses off-the-shelf rewriting tools and first-order-provers
(with my parsing technology as the front-end)

» “Modularity matters most"”; “separation of concerns”

THE END. Thank you for listening

	Netsem
	Ott
	A sideline: parsing
	Lem
	SibylFS
	Testing
	Thoughts on specification and validation
	What next?

