
SibylFS: formal specification and oracle-based
testing for POSIX and real-world file systems

Dr Tom Ridge

2016-01-27

Outline of talk

Part I
I Historical background

Part II
I Netsem TCP/IP specification
I SibylFS file system specification
I Throughout: what things did we learn?

Logic

What is a proof?

Euclid (c. 350 BC - 300 BC)

Cantor (1845 - 1918)

“No one shall expel us from the Paradise that Cantor has created.”
(Hilbert)

Spur for logic

Infinite sets, unclear

Logic really gets going

Some things are completely clear: finite objects (trees, graphs,
symbols)

Proofs as formal objects (trees)

First-order logic

∀x .P(x) and ∃x .P(x)

Set theory

First-order logic is not enough for mathematics

Bertrand Russell

Gottlob Frege

Your discovery of the contradiction caused me the greatest
surprise and, I would almost say, consternation, since it
has shaken the basis on which I intended to build
arithmetic. (Frege to Russell)

Russell on Frege’s acknowledgement

Church

Recursive functions, lambda calculus

Turing

Turing machine

The computer

Computers, logic and proof

Proof search

Any mathematical proof that can be proved in set theory can be
proved by computer (just enumerate proofs)

Is the human being irrelevant?

Is the human being irrelevant? Godel: maybe not

Naive: “For a given formal system, there will always be truths that
are not provable”

Is the human being irrelevant? Practically: no

Computer proof search is too slow for non-trivial properties

Are humans just optimized forms of proof search which
could be carried out on computer?

No, the human is clearly being creative, which is quite different
from proof search on a machine

Human “mathematical” intelligence may eventually be
replaced by machines, but this is not a certainty

Especially at the highest levels of mathematics
And especially when it comes to modelling situations
mathematically, or giving specifications, or stating lemmas

Russell’s experience: don’t do this by hand

The siren song of certainty

When the rules of logic and proof are coded on the computer we
can be reasonably confident (as confident as we can be) that the
proofs are formally correct
This is really what grabbed me and made me want to do research in
this area
If you want programs that are correct, prove them correct. . . using
a computer

Today (say, 2005 onwards): powerful, cheap computers

Consequently theorem provers start to be applied in many areas

Theorem provers still painful to use

I User interfaces etc (Emacs released in 1976 !)

UI progress?

25 years ago I hoped we would extend Emacs to do
WYSIWG [sic] word processing. That is why we added
text properties and variable width fonts. However, more
features are still needed to achieve this.
Could people please start working on the features that are
needed? (Richard Stallman, 2013)

Theorem provers still painful to use

I IMHO: the HOL logics are practically not very suitable for
large-scale formalization and probably not viable in the long
run (what we need is something like Set theory as the
foundation, and various typed systems on top, with facilities for
proving “in the large” - modules, traits etc)

I Libraries are poor; effectively no reuse of proofs between
systems (but how much reuse is there of libraries written in
different programming languages?)

I But, for “economic” reasons, it is almost inevitable that
theorem provers will become standard tools in many areas of
mathematics (just as open source has become widely used)

What should we prove correct?

Huge effort, so focus on some key components
e.g. operating systems, networking, file systems, compilers, and
tools such as parsers

The problem with verified software implementations

I Often slow (target language usually has GC; if not, verification
effort huge)

I Not widely used (because the target language is not widely
used)

I Still mostly prototypes
I Compcert verified compiler for a C-like language

I a good target: we do not really care that the compiler is a bit
slow, or is written in, say, OCaml

I but not widely used

I But we are almost there for software; for hardware, of course,
Intel famously already verifies quite a lot of the chip design

Another problem: specifications

I Everyone: “specifications are really important!”
I But where are these specifications?
I What does it mean, say, to prove that TCP/IP networking is

correct?

How can we provide better specifications?

How can we validate real-world systems against these specifications?

These are fundamental and important questions

Timeline

I Netsem: c. 2001 - 2009
I SibylFS: c. 2013 - 2015

Netsem TCP/IP specification

I Concurrency, distribution clearly important
I Academia: pi calculus etc; my uninformed view: very useful,

but no real attempt to address e.g. host and network failure
I Real-world network programming uses TCP/IP, and has to take

these issues seriously; particularly timers, timeouts etc

Netsem TCP/IP specification, artefacts

Netsem workflow

Netsem TCP/IP specification

I Written in HOL (HOL4), with various specification “idioms”
(“relational monad”)

I Relatively close correspondence to BSD implementation code
I Extensively documented
I Available at http://www.cl.cam.ac.uk/~pes20/Netsem/ and

now on GitHub https://github.com/PeterSewell/netsem

http://www.cl.cam.ac.uk/~pes20/Netsem/
https://github.com/PeterSewell/netsem

Spec excerpt

This describes a host transition. This is lifted to the “network” level
to give transitions of a network of machines.

Test infrastructure and oracle

I Written in SML OCaml C and HOL (with perl, bash etc)
I Infrastructure to run distributed test cases and record traces.

Logging of events on wire, in TCP/IP stack and at sockets API
I Oracle, to check traces against the spec

Formal foundation: labelled transition systems

I (S, L, S0,T) where S0 ⊆ S; T ⊆ S × L× S
I Notation: s l→ s ′ means (s, l , s ′) ∈ T
I T defined by clauses of the form: P(s, l , s ′)→ (s l→ s ′)

I A trace is s0
l1→ s1

l2→ s2 The spec tells you which of
these are “OK” and which not.

I Each state s ∈ S describes a network of machines, and the
TCP/IP, UDP and ICMP packets on the wires

Example trace

https://github.com/PeterSewell/netsem/blob/master/Net/TCP/
Demo-traces/trace1741#L87-L112
Or here

https://github.com/PeterSewell/netsem/blob/master/Net/TCP/Demo-traces/trace1741#L87-L112
https://github.com/PeterSewell/netsem/blob/master/Net/TCP/Demo-traces/trace1741#L87-L112
example_trace.html

Problems

A trace is s0
l1→ s1

l2→ s2 . . .

I The event logging infrastructure observed partial details of the
states si

I And partial details of the labels/events li
I And some events were not observable (internal kernel

transitions, τ events)

So the checker was given information like:
s0

l1→ s1(partial) ?→ s2 (
?→)? s? (

?→)? si . . .
And had to figure out the complete trace as above.

I When searching for such a trace, the nondeterminism is huge
I The test oracle was implemented in SML, using symbolic

execution engine of HOL, and the HOL specification

Result: checking traces was very very slow e.g. 2500 hours to check
1000 traces

Possible solution

1. s0
l1→ s1(partial) ?→ s2 (

?→)? s? (
?→)? si . . .

2. s0
l1→ s1

l2→ s2 . . .

We don’t want (1), we do want (2). This is maybe possible with
current kernel tracing technology, but likely that parts of the si are
still partial/ symbolic.

Problems

I Suppose we have s l→ s ′ where we have full information
about s, l , s ′.

I The specification is given in the form P(s, l , s ′)→ (s l→ s ′)

I This is a specification. There is no guarantee that it is
possible to compute whether P(s, l , s ′) is satisfied or not. For
Netsem, we wrote transformations to transform the spec into a
form that could be executably checked, but this was ad hoc
and painful.

Other problems

I Spec large and unwieldy (partly because it stuck closely to
BSD code structure)

I Hard to debug spec (partly because it stuck closely to BSD
code structure, partly because of a lack of tools, partly because
things took so long)

Netsem was painful; I don’t want to do that again

Several years later. . .

The specification tar pit

I I wanted to verify a novel file system implementation
I So I needed a file system specification
I So I started to construct a “little” specification, but to get

somewhere plausible takes significant effort
I Especially if you are committed to validating the spec
I And as soon as you start valdiating, you find problems, which

means you have to fix the spec
I And eventually you are forced to produce a reasonably

extensive, validated spec

What is SibylFS?

SibylFS is simultaneously
I A file system specification
I A test oracle that can be used to check real-world traces of file

system behaviour

Existing specifications

I Everyone knows specifications are important; how else do you
know what something is supposed to do? So, where are these
specifications?

I For file systems:
I POSIX online spec eg

http://pubs.opengroup.org/onlinepubs/9699919799/
I other informal specifications (Linux Standard Base, libc, muslc

etc)
I man pages (Linux, Mac, FreeBSD. . . all subtly different, even

between distributions of same OS)
I implementations (presumably you can read the source code and

discover “the truth” for a particular impl)
I test suites (for a small number of test cases eg 50 for rename in

POSIX test suite)

http://pubs.opengroup.org/onlinepubs/9699919799/

Problems with existing specifications

I Problems:
I lots of specifications - which is “right”?
I specs are mostly informal, and so (almost inevitably)

ambiguous, incomplete, plain wrong
I kernel code is formal, but unreadable unless you are a kernel

coder, and impractical as a spec
I (perhaps most important) Does an implementation actually

meet the specification? Unfortunately not possible to use
existing specs to test an implementation directly

Problem: implementations and specifications

I Do file system implementations meet the specifications? NO
(none of them as far as we can tell!)

I for “typical” use cases, they mostly behave sensibly; in edge
cases things go wrong

I => the specifications are not much use in these edge cases

Another problem: how do implementations differ?

I In edge cases, we know file systems behave quite differently
I The question now is: how do they behave differently? Some

individuals (e.g. file system developers) may know some of the
truth (e.g. about their file system); no-one knows the full truth.

Do specifications really matter? Do file systems matter?

See here “Speaking with my ‘git’ hat on. . . ”
And more recently http://www.itworld.com/article/2868393/
linus-torvalds-apples-hfs-is-probably-the-worst-file-system-ever.
html

torvalds_on_fs.html
http://www.itworld.com/article/2868393/linus-torvalds-apples-hfs-is-probably-the-worst-file-system-ever.html
http://www.itworld.com/article/2868393/linus-torvalds-apples-hfs-is-probably-the-worst-file-system-ever.html
http://www.itworld.com/article/2868393/linus-torvalds-apples-hfs-is-probably-the-worst-file-system-ever.html

Netsem redux

What do we want from a specification?
I Precise, unambiguous, readable, maintainable, comphrehensive,

detailed
I also loose: the spec should precisely and unambiguously

describe any looseness; but not too loose. . .

I Usable as a test oracle
I ideally it should be easy to use the spec directly to test

conformance of real-world implementations

What have we done?

I A formal specification of filesystem behaviour (with variants
for POSIX, Linux, Mac, FreeBSD)

I precise, unambiguous, readable, maintainable, comphrehensive,
detailed

I A test oracle (based directly on the spec) that can determine
whether any observed trace of a real-world system conforms to
the spec

I The test oracle enables exhaustive testing. We also provide an
extensive test suite of >20k scripts, and the results of running
those tests on >40 different combinations of
libc+OS+filesystem

I 20k test cases (and acceptable results) probably infeasible with
hand-written test cases

I impossible to compare results at this scale (800k traces)
without an oracle

System structure

I Test scripts mostly generated automatically, with additional
hand-written scripts

I Test scripts are fed to a test executor which executes the
scripts on a real-world libc+OS+filesystem stack

I Results are recorded as traces
I Traces are checked by SibylFS (the spec) to determine whether

they represent allowable behaviour or not; the output is in the
form of a checked trace

Example test script
A test script is essentially a list of libc calls to execute on a
real-world system

@type script
#####################################
Test link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4
#####################################
mkdir "empty_dir1" 0o777
mkdir "empty_dir2" 0o777
mkdir "nonempty_dir1" 0o777
mkdir "nonempty_dir1/d2" 0o777
open "nonempty_dir1/d2/f3.txt" [O_CREAT;O_WRONLY] 0o666
write! (FD 3) "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor inc" 83
close (FD 3)
... // further setup commands
link "nonempty_dir1/d2/sl_dotdot_d2" "nonempty_dir1/nonexist_4"
...

Example trace (behaviour of real-world system)
A trace records the libc calls from the test script, and the responses
received from the real-world system

processing file 'link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4-int.trace' ...
@type trace
#####################################
Test link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4
#####################################

5: mkdir "empty_dir1" 0o777
Tau
RV_none

6: mkdir "empty_dir2" 0o777
Tau
RV_none

7: mkdir "nonempty_dir1" 0o777
Tau
RV_none

8: mkdir "nonempty_dir1/d2" 0o777
Tau
RV_none

9: open "nonempty_dir1/d2/f3.txt" [O_CREAT;O_WRONLY] 0o666
Tau
RV_num(3)

10: write! (FD 3) "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor inc" 83
Tau
RV_num(83)

...

28: link "nonempty_dir1/d2/sl_dotdot_d2" "nonempty_dir1/nonexist_4"
Tau
RV_none

...

Example checked trace

I See e.g. here (local) or here (online)

link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4-int.trace.html
http://fs.dsheets.name/2015-03-15_linux_ext+hfsplus+tmpfs/html/suite/link/test/link___link_nonempty_dir1__d2__sl_dotdot_d2___nonempty_dir1__nonexist_4-int.trace/index.html

The SibylFS specification

I A specification of the behaviour of libc+OS+filesystem, i.e.,
the behaviour a user process (application) sees when linked to
libc

I Written in Lem; available in HOL4, Isabelle/HOL and OCaml;
about 6k lines of Lem/HOL for the specification

I Variants for POSIX, Linux, Mac and FreeBSD
I For POSIX, a spec of allowable behaviours; for Linux Mac and

FreeBSD, a spec of existing real-world behaviours (with some
looseness); the parts of the spec that are Linux/Mac/FreeBSD
weird behaviours are clearly identifiable

Main differences to Netsem

I Effort to construct the spec: 3 person years vs 10+ years
I Spec clearly structured, modular, elegant (as far as possible);

this makes it much easier to update the spec and debug it
I The oracle used to check traces is 6 orders of magnitude (!)

faster than the Netsem oracle. Mainly this is due to the way
the spec was written.

Form of the specification: labelled transition system
I What are the labels? (Labels correspond to the events we are

interested in)
I Interactions between a user process and the libc+OS+filesystem

stack at the libc interface (rename p1 p2 etc)
I Process creation and destruction
I Tau events (e.g. internal OS processing)

Top-level type of labels

type os_label =
| OS_CALL of (ty_pid * ty_os_command)
| OS_RETURN of (ty_pid * error_or_value ret_value)
| OS_CREATE of (ty_pid * uid * gid)
| OS_DESTROY of ty_pid
| OS_TAU

I We specify the behaviour of the stack under any sequence of
labels; multiple processes can execute concurrently, calls can
overlap in time

libc calls
I What are the libc calls we handle? No memory-mapped files,

no *-at forms of libc calls, no “filesystem out of space” errors,
but mostly everything else related to files:

type ty_os_command =
| OS_CLOSE of ty_fd (* per-process file descriptors *)
| OS_LINK of (cstring * cstring) (* hard links *)
| OS_MKDIR of (cstring * file_perm) (* cstring can include null *)
| OS_OPEN of (cstring * int_open_flags * maybe file_perm) (* open flags as fixed-width int, platform specific encoding *)
| OS_PREAD of (ty_fd * size_t * off_t)
| OS_READ of (ty_fd * size_t)
| OS_READDIR of ty_dh
| OS_OPENDIR of cstring
| OS_REWINDDIR of ty_dh
| OS_CLOSEDIR of ty_dh
| OS_READLINK of cstring (* symlinks *)
| OS_RENAME of (cstring * cstring)
| OS_RMDIR of cstring
| OS_STAT of cstring
| OS_LSTAT of cstring
| OS_SYMLINK of (cstring * cstring)
| OS_TRUNCATE of (cstring * off_t)
| OS_UNLINK of cstring
| OS_PWRITE of (ty_fd * ty_bytes * size_t * off_t)
| OS_WRITE of (ty_fd * ty_bytes * size_t)
| OS_UMASK of file_perm (* permissions *)
| OS_CHMOD of (cstring * file_perm)
| OS_CHOWN of (cstring * uid * gid) (* users, groups *)
| OS_CHDIR of cstring (* model of per-process state *)
| OS_LSEEK of (ty_fd * off_t * int_seek_command)
| ...

Labelled transition systems again

I For Netsem, we had a specification detailing transitions
s l→ s ′

I Here s is the state of a network, including the state of the
hosts.

I For file systems, it doesn’t make sense to do this.

SibylFS trace checking

I We must specify the interface to file systems, not the internal
state.

I We still use an LTS, but now the states are “abstract”, with no
direct relation to real-world file system states (and we don’t
want to specify what the relation is! there are too many
real-world file system implementations).

I All that matters is the sequence of labels that the spec gives
rise to

SibylFS trace checking

Given a sequence of observed events (labels). . .

l1 l2 l3...

. . . find a trace

s0
l1→ s1

l2→ s2 . . .

Form of the transition system: a step function

Netsem specified transitions in the form

P(s, l , s ′)→ (s l→ s ′)

where P is not executable. For SibylFS, we specify a function step
such that

step(s, l) = {s ′|P(s, l , s ′)}

And this step function is computable.

States are abstract, symbolic, constraints; directly
executable in OCaml

The oracle

I The oracle processes the labels one by one, keeping track of a
set of possible states

I Given a sequence of observed events (labels) l1l2l3... we
compute S0

l1→ S1
l2→ S2 . . .

I These are sets of possible spec states. There are a finite
number of spec states at each stage. Each spec state
corresponds to possibly infinite real-world states.

I Pros: very fast trace checking
I Cons: spec arguably less natural; custom-built ad hoc symbolic

expressions/ constraint languages

The main challenges when writing the spec

I Interpreting POSIX
I Writing the spec so that it can be used to efficiently check

real-world traces of behaviour (the problem is nondeterminism
and state space explosion)

I Dealing with the complexity of observed real-world behaviour

Constructing the model from real-world traces

Given an observed sequence

2, 3, 5, 7, 11, 13, 17...

Come up with the defn

let primes = ...

But with 800000 observed sequences, and an extremely complicated
state space

The complexity of real-world behaviour
I A scenario: 18 months into the project, the POSIX and Linux

variants of the spec were mostly complete; we wanted to
extend the spec to cover Mac

I We ran the existing test scripts on Mac and checked them
using the initial version of the Mac spec, derived from POSIX

I >20k test scripts; of the resulting traces, thousands failed to
check (>5000 for open alone)

I These failing traces have to be examined and the spec updated
so that the spec behaviour matches the real-world behaviour

I We need to:
I figure out why the traces are failing
I figure out what changes are needed to the spec; the changes

should preserve the structure, readability and concision of the
spec; not be too loose

I What helped: speed of trace checking; modularity: we tried to
make the spec as modular as possible, with each component
having a clearly defined role, with clearly defined interfaces etc.

The spec

An html version is here
See e.g. fsop_rename_checks_rsrc_rdst

spec.html

Testing

I The spec is reasonably large as a specification (c. 6000+ lines);
how can we gain confidence that it is correct?

I From the beginning we wanted to extensively validate the spec,
by using it to check traces of real-world behaviour

I This form of testing also uncovers bugs in real-world systems

Test oracle enables combinatorial testing

I Existing filesystem test suites hardcode the expected answers
for a given libc call; practically, they tend to have a relatively
small number of tests

I Our approach is different: a test script is just a sequence of
libc calls (we don’t need to say what should happen after each
call - the spec already contains this knowledge)

I This enables randomized and combinatorial testing
I We try to exhaustively combinatorially test the libc interface

using tests that are generated automatically
I Much more usable and less effort than hand-coding test cases

Difficulty of LTS trace checking

I NetSem gave a specification of UDP and TCP/IP as an LTS
which was then used as a test oracle; our approach is broadly
based on the NetSem approach

I NetSem took 2500 CPU-hours to check 1000 traces; this is at
the limit of practicality; the cost of checking made it very
difficult to update and revise the spec

I Checking a trace against an LTS is a very general problem
which I think deserves a bit more attention

I The SibylFS spec was designed from the start for efficient trace
checking: checking >20k tests on a 4-core i7 takes about 79s
(it takes 152s to execute the tests on an in-memory tmpfs
filesystem)

I Our testing involves a very large number of test scripts;
checking is extremely fast; indeed SibylFS is fast enough that it
could be used to check behaviour “online”

Test results

We found the following sorts of bugs
I Errors (and ambiguities etc) in the specifications (including

POSIX, man pages etc)
I Errors and deviations in implementations
I Errors in our spec (which we then fixed of course!) and tracing

infrastructure

Test results, stats

I Trace acceptance
I Linux: 21061 accepted by spec; 9 rejected (21070 total)
I Mac: 21036 accepted by spec, 34 rejected (21070 total);

FreeBSD similar
I essentially no barrier to getting 100% trace acceptance

I Coverage: >98% (of the spec)
I by way of comparison, a paper (Groce et al., 2007,
“Randomized differential testing. . . ”) from NASA scientists that
applied randomized testing to a model of a filesystem achieved
89% coverage

Test results, strange behaviours

I Error codes are quite often non-POSIX
I Path resolution, particularly when a trailing slash is involved, is

variable, non-POSIX
I Treatment of paths referencing symlinks, particularly when the

path ends in a trailing slash, is highly variable
I Various overlay filesystems, and FUSE filesystems, mess up

things like permissions

Test results, strange behaviours
I More serious: posixovl/VFAT (posix emulation on top of VFAT)

gets link count wrong when rename overwrites a file that is
linked elsewhere; possible to get to a state where the filesystem
contains no files, but there is no free space (space leak)

I OpenZFS on Linux 3.13.0-34 (Ubuntu Trusty): files opened
with O_APPEND would not seek to the end of the file before
write or pwrite (probably causing applications that use this
functionality to fail)

I OpenZFS on OS/X: possible to execute a sequence of calls
which leads to the calling process hanging using 100% CPU,
unresponsive to signals; volume cannot be unmounted, machine
cannot be shut down; force unmounting may cause storage
device to become unusable until next system restart

I Permissions: the Linux implementation of permissions should
give the same behaviour from one kernel version to the next;
however, we found test scripts involving file and directory
access that failed on Linux kernel 3.13 and succeeded on 3.14
which we believe is due to a buggy 3.13 implementation of
permissions in edge cases

A FreeBSD bug

I An important invariant
I if there is an error when executing a file system function, then

the state of the file system is unchanged
I => e.g. so if I try to create a file using open and I get an error,

I don’t have to clear up after myself
I this invariant appears to hold for POSIX, Linux and Mac

I https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=202892
(2015-09-04!)

I opening a file: symlink deleted, file created, error returned
I => here, this invariant is broken on FreeBSD

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=202892

An FSCQ bug

https://github.com/mit-pdos/fscq-impl/issues/2

https://github.com/mit-pdos/fscq-impl/issues/2

Testing summary

I Huge number of tests, mostly automatically generated; tested
on a large number of stacks

I SibylFS is very efficient at checking tests
I Excellent trace acceptance and coverage figures
I In edge cases there are numerous differences between POSIX,

Linux, Mac and FreeBSD; most are not very interesting, but
the spec gives a complete description of them; the testing even
uncovered some relatively serious bugs (which we didn’t
expect) and (please don’t repeat this) a serious bug in a
verified file system

I The real result of testing is that we have confidence in the spec

A virtuous circle

I Is our spec/ testing perfect?
I Almost certainly not, but in many ways it improves on the

status quo
I And there is a virtuous circle

Possible uses of the spec
I Documentation (formal counterpart to POSIX)
I Testing existing/new filesystems (particularly non-traditional

filesystems) e.g. FSCQ, Flashix
I Reference specification for verified filesystem implementations
I Reference model (e.g. for systems research - a lot of papers

construct their own little models of parts of the filesystem)
I Basis for formal proof (Thomas Tuerk did some initial work on

this in Isabelle/HOL) e.g. of properties of filesystems, or as a
basis for soundness proofs of program logics etc.

I To provide a POSIX compatiblity layer e.g. on Windows, or
non-traditional settings such as Mirage

I For analysis of applications: e.g. do any applications use libc
calls in edge cases where the behaviour of Linux and Mac
differs?

I For analysis of filesystems: e.g. do Linux and Mac behave the
same when restricted to some subset of libc?

I To identify gaps in existing test suites
I etc

Future work

Lots of possibilities. In the short term, we hope for take-up from
industry.
We are currently working on a verified file system
implementation. Compared to existing file systems, we hope for:

I better performance
I more features and functionality
I verified correctness

	Historical background
	Part II: Mechanized specification, Netsem and SibylFS
	Netsem
	SibylFS
	Testing
	Testing
	Conclusion

